Model Checking for
Communicating Quantum Processes

TiM DAVIDSON'* SIMON J. GAY2T, HYNEK MLNARTK?T,
RAJAGOPAL NAGARAJAN!Y NICK PAPANIKOLAOU?S

Y Department of Computer Science, University of Warwick, UK
2 Department of Computing Science, University of Glasgow, UK
3 Warwick Institute for Financial Computing, University of Warwick, UK
4 International Digital Laboratory, WMG, University of Warwick, UK

Received 31 August 2010; In final form 31 August 2010

Quantum communication is a rapidly growing area of research
and development. Quantum cryptography has already been im-
plemented for secure communication, and commercial solutions
are available. The application of formal methods to classical
computing and communication systems has been very success-
ful, and is widely used by industry. We expect similar benefits for
the verification of quantum systems. Communicating Quantum
Processes (CQP) is a process calculus based on the m-calculus
with the inclusion of primitives for quantum information. Pro-
cess calculi provide an algebraic approach to system specifica-
tion and behavioural analysis. The Quantum Model Checker
(QMQ) is a tool for the automated verification of system correct-
ness. Through an exhaustive search of the possible executions,
QMC can check that correctness properties expressed using tem-
poral logic formulae are satisfied. In this paper we describe our
approach to the verification of quantum systems using a combi-
nation of process calculus and model checking. We also define a

* email: tim@dcs.warwick.ac.uk

T email: simon@dcs.gla.ac.uk

f email: hmlnarik@post.cz

9 email: bijuldcs.warwick.ac.uk

§ email: N.Papanikolaou@warwick.ac.uk

formal translation from CQP to the modelling language used by
QMC and prove that this preserves the semantics of all supported
CQP processes.

Key words: Quantum computing, quantum communication, process cal-
culus, model-checking, translation, semantics

1 INTRODUCTION

Quantum computing [23, 16] offers the prospect of a radically new paradigm
for information processing which takes advantage of the physical phenomena
occurring on the atomic scale, including the superposition of states, entangle-
ment and non—locality, and probabilistic measurement. Widespread interest
in the field is partly due to the discovery of an efficient quantum algorithm
for prime factoring [29], which, if implemented on a practical quantum com-
puter, poses a potential threat to the security of well-known cryptosystems.
Quantum computers are still in the experimental stage and are a long way
from entering mainstream computing. On the other hand, proposals for quan-
tum cryptography open up the possibility for secure communications [3, 6]
even against a quantum computer, and commercial implementations already
exist.

Techniques from the classical computer science field known as formal
methods [28] have been very successful in analysing classical communica-
tion protocols, including security protocols. The characteristics of formal
methods are the use of formal languages, with precisely-defined semantics,
to model systems and their behaviour combined with the use of formal rea-
soning systems, often supported by automated software tools, to verify that
systems satisfy their specifications. An important principle is compositional
analysis, meaning analysis of a system by combining the results of analysing
separate subsystems.

Experience in classical computing science has shown that it is extremely
valuable to be able to analyse a model which is as close as possible to an
implemented system, and the results complement mathematical proofs about
an idealized protocol. We expect this complementary view to be valuable
for quantum systems too. For example, there are several published proofs of
correctness of the well-known BB84 quantum key distribution protocol (eg.
[21]); we have no reason to doubt their validity, but we argue that they do
not tell the whole story about correctness of an implemented quantum cryp-
tosystem. An implemented system contains a significant amount of classical

computation and communication in addition to the core quantum protocol,
and the correctness of the program code for the complete implementation is
not directly addressed by the mathematical proof. By contrast, the approach
of formal methods is to construct a formal model of the whole system, write
a logical specification of correctness, and then, in an ideal situation, use an
automated software tool to verify the specification or discover a fault. The
emphasis of formal methods is on the development of generic theories and
tools that can be applied uniformly to a range of specific systems.

Process calculus is a formal language for describing the behaviour of dis-
tributed communicating systems. It is a well-developed subfield of formal
methods, and within the last few years several researchers, including our-
selves, have developed quantum versions of process calculus [13, 18, 9, 31].

The key feature of quantum process calculus is the ability to represent
quantum information and operations so that the quantum—mechanical laws
are obeyed. Quantum information differs from classical information, for ex-
ample, in the ability of quantum bits (qubits) to be in a superposition of many
basis states, and to be entangled with other qubits. Other interesting proper-
ties include the no-cloning principle and probabilistic measurement. Measur-
ing a quantum state — the equivalent of reading a classical bit — will always
produce a probabilistic result based on the initial superposition, collapsing the
initial state while doing so. Measurement is therefore destructive and, unlike
other quantum operations, it is not reversible. A quantum state can therefore
contain more information than can be directly extracted (this is indeed one of
the most powerful features of a quantum state), but it makes it impossible to
copy an unknown quantum state [30].

Process calculi provide a framework in which to describe a process and
consider various properties such as equivalence from an equational point of
view. While this may help to verify some properties of a system, it is neces-
sary to use automated techniques for the verification of more complex prop-
erties. Model—checking [5] is an automated technique for formal verification
and works by performing an exhaustive search on the state space of the sys-
tem in question. The exhaustive nature of model-checking is intended to
locate unexpected behaviours of a system which may easily go unnoticed by
a human tester.

Classical model checking tools are not adequate for the representation of
quantum information, although it is possible to model simple systems par-
tially. Examples of early attempts of model checking quantum systems using
existing tools are the modelling of BB84 [3] using CCS and the CWB-NC tool
by Nagarajan and Gay [22], and the use of the PRISM probabilistic model

checker [17] by Gay et al. [10] to check a selection of quantum protocols
including quantum teleportation [4] and quantum error correction.

Since model checking searches the complete state space of a system, it is
computationally expensive, and efficient search algorithms are very impor-
tant. Since arbitrary quantum computations cannot be simulated efficiently
on a classical computer, the possibility of efficient model checking for gen-
eral quantum systems is precluded from the outset. However, there exists
a restricted class of quantum systems, namely those expressible within the
so—called stabilizer formalism, for which polynomial-time simulation is pos-
sible. The class of stabilizer circuits captures a significant class of practical
quantum protocols, but it falls short of the full power of quantum computation
needed to implement quantum algorithms.

The Quantum Model Checker (QMC) [10, 14, 25] was built to take ad-
vantage of the efficient representation and simulation algorithms offered by
the stabilizer formalism, and it has been tested with a number of small but
practical case studies. However, the stabilizer formalism is too restrictive in
the long term, since the verification of larger systems and complex protocols
with security requirements requires support for arbitrary quantum operators.

Combining process calculus (for the high—level description of a system)
with model—checking algorithms and tools (for verification of the same sys-
tem’s properties) is a popular approach to the analysis of systems. We believe
that there are numerous benefits in using the CQP formalism for the descrip-
tion of quantum protocols and complex systems, due to its expressive power;
this paper presents a method that would enable the translation of such de-
scriptions to a form usable by QMC. The merits of our approach lie in the
combination of two techniques which have proven successful in their own
right; the translation presented here is likely to be of much practical use.

Our interest is in the analysis of protocols and implemented systems for
quantum communication and quantum cryptography. In this paper we de-
scribe a translation from the high—level specification language Communicat-
ing Quantum Processes (CQP) [12] to a form that is usable by the Quantum
Model Checker (QMC) [14]. We prove that this translation preserves the se-
mantics of CQP processes, therefore establishing it as a practical verification
technique.

2 BACKGROUND

In this section we review the basic concepts of quantum information. We re-
fer the reader to standard texts for further details (e.g. [23] and [16]). An

account aimed at Computer Scientists is given in [27]. In this paper we are
interested in communication systems which may involve both classical com-
puting devices and quantum components. Due to the limitations of QMC, we
are primarily interested in states and operations which arise in the so-called
stabilizer formalism; according to the Gottesman-Knill theorem [15], quan-
tum circuits in this formalism are simulable in polynomial time on a classical
computer.

In quantum information, the most basic system of interest is the qubit, or
quantum bit, which is represented by a particle with two degrees of freedom
(such as a polarised photon, or a spin-% particle). The state of a qubit is rep-
resented by a unit vector in a 2-dimensional complex Hilbert space Hy. The
standard basis, conventionally written in Dirac’s braket notation, is {|0), |1) }
where |0) = [§] and |1) = [{]. The states |0) and |1) are often associated
with the two states of a classical bit, however in contrast to a bit, the general
state of a qubit is a superposition of basis states

) = a|0) + 5|1)

where o, 8 € C and |a|? + | 3|2 = 1; equivalently |¢)) = [F]. Multiple qubit
systems are represented using the tensor product (as opposed to the cartesian
product for classical systems). For example, a 2-qubit system has basis states
{]00),]01), |10}, |11)} (in H4 = Ha ® Ha) where |00) is an abbreviation of
the tensor product |0) ® |0). The general state of a 2-qubit system is then
a|00) + B|01) + ~v|10) + §|11) where |a|? + |B]% + |y]? + |6]? = 1. Such a
system is separable if it can be expressed as the tensor product of two single
qubit systems, otherwise the two systems are said to be entangled.

The evolution of a quantum system is expressed by unitary linear oper-
ators. An operator U is unitary if UUT = UTU = I, where UT is the
conjugate-transpose of U and [is the identity operator. Examples of sin-
gle qubit operators include the Pauli gates X, Y, Z, the phase gate P and the
Hadamard operator H. These are defined by the following matrices

o] B R
R

The Hadamard operator is often used to create and destroy superpositions, for
example H(%(|O>+|1>)) = 2(10)+[1))+5(|0) — [1)) = |0). The standard

2-qubit operator is the controlled-not gate C', which has the matrix

1 000
01 00
0_0001
001 0

On basis states, this has the effect of applying the X gate to the second qubit
based on the state of the first qubit; it extends to superpositions by linearity.

The actual state of a quantum system is unknown until it is measured; how-
ever, the act of measurement is destructive and collapses the system proba-
bilistically to a basis state. Measuring a qubit in state [)) = «|0) + 5|1) with
respect to the standard basis will collapse the qubit into either state |0) (with
probability |«|?) or state |1) (with probability |3|?). The destructive nature
of measurement is particularly significant when it comes to entangled states
because a measurement of one qubit can affect the states of other qubits.
For example, measuring the first qubit of an entangled system in the state
%(|OO> +|11)) results in the state [00) with probability 3 and state |11) with
probability % This has the effect of fixing the state of the second qubit even
though it was not measured.

The stabilizer formalism (originally due to Gottesman [15]) is concerned
with the quantum states that arise in computations involving only the oper-
ations mentioned above. In order to perform arbitrary quantum computa-
tions, a universal set of gates would be required; however, the Clifford gates
{H,C, P} do not constitute a universal set. What is distinctive about this
set of gates is that the operations may be simulated efficiently on a classical
computer (this is known as the Gottesman—Knill theorem; see [15, 23]).

3 THE NATURE AND STRUCTURE OF QUANTUM PROTOCOLS

A quantum protocol is loosely defined as a set of operations and measure-
ments on a global quantum state, which may be distributed amongst a num-
ber of users; measurement outcomes may be communicated classically be-
tween users. Often quantum protocols are expressed schematically using the
quantum circuit model, however this model only allows one to describe the
computational parts of a protocol. For the sake of illustration, we consider
the quantum teleportation protocol [4], shown using standard quantum circuit
notation in Figure 1.

Teleportation is a process which allows two users who share an entangled
pair of qubits, to exchange an unknown qubit state by communicating only

) —— A

——

(ZHXT 1v)

FIGURE 1
Quantum circuit diagram for the teleportation protocol.

two classical values, namely, the outcomes of two measurements. The proto-
col is described below.

Alice wishes to send Bob the qubit state |1)) = «|0) + 3|1); we shall call
this qubit ‘1’. To begin with, a pair of qubits (labelled 2’ and ‘3’) are placed
in the quantum state
1
V2

Qubit 2 is given to Alice and qubit 3 is given to Bob. Since | V) is an entan-
gled state, any measurement performed on the one qubit will affect the state
of the other qubit irreversibly. For instance, if Alice were to measure qubit
2 with respect to the standard basis, she would collapse the state of qubits 2

©) (100) +[11))

and 3 to either |00) or |11) at random with equal probability (%)2 = 0.5.
So we have a system of three qubits described by the overall quantum state
) ®).

Alice starts by applying the controlled-not gate C 5 (to qubits 1 and 2)
and then the Hadamard H; (to qubit 1). She subsequently measures qubits
1 and 2 with respect to the standard basis, and records the outcomes of her
measurements M7 and Ms. She sends these two classical values to Bob (these
classical data are represented by the double lines in the figure), who then
applies the operator X M1 . ZM2 At the end of the protocol, qubit 3 will be in
the state |t)), thus achieving Alice’s goal of sending the original state of qubit
1.

This example shows some typical characteristics of a quantum protocol.
This particular protocol is quite simple, as it involves only two users and just
a handful of operations and measurements. As such, it is amenable to analysis
by hand and can easily be shown to be correct. However, large systems (such
as quantum key distribution networks [7]) would typically include the telepor-

T == Int | Qbit | “[T] | Op(1) | Op(2) |

v x= 01| - |qg|lec|]H]|]
e == v | x| measureé | ex=¢€° | ete
P == 0| (P|P)| P+P | ei:T).P | eé.P | {e}.P |

(new z[T])P | (qbit x)P

FIGURE 2
CQP process syntax.

tation protocol as a primitive and would combine it with other computations
and transmissions, both quantum and classical.

The quantum circuit formalism is able to describe the quantum operations
involved in a computation, but cannot represent the structural aspects (the
components and interactions) of a protocol. Various programming and speci-
fication formalisms have been proposed in order to address the shortcomings
of the quantum circuit model when describing quantum protocols. These
include quantum programming languages and quantum process calculi (see
[11] for a survey).

4 SPECIFYING QUANTUM PROTOCOLS USING PROCESS CAL-
CULUS

Process calculus is used to describe the interactions (synchronizations and
communications) between the components, or processes, of a system. Gener-
ally, process calculi are able to express sequential and parallel execution, and
may often feature constructs for non-deterministic choice, conditional choice,
repetition and more. Quantum process calculi, including QPAlg [18, 19],
qCCS [9, 31, 32] and CQP [12, 13], also have the ability to represent quan-
tum information as a condition on the execution. In this section we introduce
the quantum process calculus Communicating Quantum Processes (CQP).
The syntax of CQP is defined by the grammar in Figure 2. This consists
of types T, values v, expressions e and processes P. We use the notation
€=ei,...,en, and write |€| for the length of a tuple. Types consist of integer
and qubit types Int and Qbit, channel types ~[T7], and n-qubit operator types

Teleport = (qgbity, z)({z *=H}.{z,y *= CNot}.
(new e:Int, Int])(Alice | Bob))

Alice = (qbit z).{z *=H}.{z, 2 += CNot}.{z *= H}.
e![measure z, measure x].0
Bob = e?[r:Int,s:Int].{y x=Z"}.{y x=X°}.0
FIGURE 3

Quantum teleportation modelled in CQP.

Op(n). Values consist of literal data types (0,1,...) and unitary operators
(H,...). Expressions consist of values v, variables (x, y, . . .), measurements
(measure q), application of unitary operators (g *= U¢, that is, operator U* is
applied to qubits ¢) and data operators (e.g. e + e).

Processes consist of the nil process 0 which has no execution; parallel
composition P | @ in which the executions of P and () interleave; non-
deterministic choice P + () which can behave as P or as (); inputs c? [ET] P
where values and qubit names are received via channel ¢ and substituted for
the variables Z in P; outputs c![v]. P in which the values v are sent on channel
¢ and then the process behaves as P; actions {e}. P which may, for example,
involve unitary operations before continuing as P; the restriction of channel
¢ to the process P, (new ¢: 1) P; and qubit declaration (gbit)P in which
a fresh qubit is prepared in the state |0) for use by P.

The syntax is complemented by a type system which restricts the construc-
tion of processes to meaningful terms. For example, a measurement or unitary
operator should only be applied to qubits. An important result [13, Theorem
1] arising from the type system guarantees that each qubit is “owned” by only
one process at any given time. In conjunction with type preservation [13,
Theorem 2], this ensures that CQP processes obey the no-cloning property of
quantum mechanics.

The teleportation protocol, modelled in CQP, is shown in Figure 3. This
model clearly specifies the interactions between the two parties, Alice and
Bob, who act in parallel with one another. The initial actions of Teleport are
the creation of the two qubits (y and z) and their preparation into the entan-

gled state |¥) = %(|00> +]11)) using the Hadamard (H) and controlled-not
(CNot) operators. The process then proceeds with Alice and Bob acting in
parallel and sharing the channel e.

Alice prepares a new qubit x in the state |¢p) = %OO) + |1)) using the
Hadamard operator — this is the state that will be “teleported” to Bob. Af-
ter applying the controlled-not and Hadamard operations, Alice measures the
qubits x and z. Evaluating the measurements leads probabilistically to one
of four possible outcomes, e.g. e![l1,0].0. Communication in CQP is syn-
chronous, therefore the sending by Alice and receiving by Bob occurs in one
step. The values received from Alice are substituted for the variables r and s
which appear as the conditions for applying the operators X and Z to Bob’s
qubit y.

4.1 Verification using Process Calculus
The typical approach to verification using process calculus is to define two
models; one which describes the implementation of a system, and another
(the specification) which describes the intended high—level behaviour. The
correctness of the implementation with respect to the specification can then
be established by using a notion of equivalence, such as bisimulation [26].
Bisimulation captures the ability of two systems to match the actions of
each another. A relation B is called a strong bisimulation if whenever (P, Q) €
B then

e if P %5 P’ then there exists @’ such that Q -~ Q' and (P’,Q’) € B
e if Q - Q' then there exists P’ such that P -+ P’ and (P",Q’) € B

where « is an input, output or internal action.

Strong bisimulation requires each action to be matched by a corresponding
action, however for verification purposes this is often too discerning. Instead,
it may be desirable to treat the internal actions of a process abstractly and only
require external interactions (input and output) to be matched. This concept,
called weak bisimulation, can identify processes that are indistinguishable to
an observer yet may have different internal behaviours.

Observational equivalence is an important concept when considering the
behaviour of a subsystem in the context of a larger system. The ability to
verify individual components separately and then draw conclusions about a
combined system is very advantageous; for example, it reduces the overall
complexity of the verification, resulting in simpler and more accurate models,
and also enables components to be swapped for equivalent parts without re-
quiring the complete system to be re-analysed. This compositional approach

10

to verification relies on congruence relations. A bisimulation is a congruence
if it is preserved by all contexts, however not all bisimulations are congru-
ences.

Due to the presence of entanglement and probabilistic measurement, con-
gruence relations for quantum processes are difficult to find. A number of
bisimulation relations have been defined for QPAlg [19] and qCCS [9, 31, 32],
in particular, these include congruence relations for quantum processes with-
out classical data. Congruence for general quantum processes, which is re-
quired for the analysis of many interesting quantum protocols that combine
quantum and classical information, has been an open problem for a few years.
As noted in Section 7, our own research programme includes the investigation
of process equivalences using CQP, focussing on the factors that determine
congruence.

5 MODEL-CHECKING FOR QUANTUM PROTOCOLS

In this section we introduce the Quantum Model Checker (QMC) and its use
in the verification of quantum protocols. QMC is a software tool that auto-
matically explores all possible behaviours arising from a protocol model, and
enables logic properties expressed with Quantum Computation Tree Logic
(QCTL) [2] to be checked over the resulting structure.

A protocol model will always consist of definitions of one or more pro-
cesses; the commands performed by each of these processes must be inter-
leaved (so as to emulate concurrent execution), and non—determinism (which
occurs explicitly in selection structures (if :: a —> ...:: b -> ... fi)
and implicitly when measurements are performed) must be resolved, produc-
ing an execution tree for the modelled system.

It is important to explain the way in which the global state is represented
for QMC models. Each node in the execution tree for a given model con-
tains a tuple (P, k, 2, |¢))) where P and |) in particular are respectively the
process term and the overall quantum state at that point in the simulation (x
and ¥ are global and local registers). The quantum state |¢)) is represented
internally in an implicit way: rather than storing the so-called state vector
representation of |1) (which grows exponentially in length as a function of
the total number of qubits in [¢))), we use the stabilizer array representa-
tion, which is a binary representation of the set of Pauli operators that fix (or
stabilize) [¢). Using the stabilizer array representation, we gain significant
computational benefits in terms of both space and time when simulating a
given protocol, given that simulation of stabilizer circuits is performed using

11

t u= integer | bool | real | qubit | channel oft
e u= n|r|ax|e+e | e1—ex | erxex | e1/en
\ true | false | note | e; andey | €1 or eg

\ €1 = €g | e < ez \ e] > ez \ meas e | newqubit

S = e | x:=e | x1lzs | x1722 | cnot z1 22 | had z
| phz | Xz | Yz | Zz | S1;5
H == =SH| =S
GC = if Hfi | do H od
C == S; |GC | CiCy | e
VD = warz:t; VD | ¢
P = processp VDbeginC end P | ¢
M = programp VD begin P end
FIGURE 4
QMC Concrete Syntax

a polynomial time algorithm [1], and the representation of the state grows
polynomially with the number of total qubits. There is scope for optimising
the simulation further, notably by using low-level binary operations and by
packing the stabilizer array representation into 32-bit registers, as Aaronson
and Gottesman chose to do in the final implementation of the CHP simulator

[1].

5.1 Modelling Quantum Protocols in QMC

We have built an imperative-style concurrent specification language for the
needs of the quantum model-checking tool QMC. The syntax of QMC is de-
fined by the grammar in Figure 4. Expressions e consist of names, values,
arithmetic operators, boolean operators, quantum measurement and initiali-
sation of new qubits. Statements .S consist of expressions, assignment, com-
munication, quantum operations and sequences of statements. Options H
allow a choice between one or more statements. Guarded commands GC'
consist of the if and do constructs. Commands C' consist of statements,

12

guarded commands, or a sequence of commands. Variable declarations V D
allow a (possibly empty) sequence of declarations. Processes P are a (possi-
bly empty) sequence of process constructs, each containing variable declara-
tions and commands. A program M is a single construct containing (global)
variable declarations and processes.

For the purpose of this paper, we will demonstrate the syntax of this lan-
guage by example. In this language the teleportation protocol (assuming we
are trying to teleport the state |¢)) = %(|O> + |1))) may be expressed by the
program in Figure 5.

In our setting, we allow for global variables (such as e1, e2), typed com-
munication channels (such as ch) which are always global, and local (pri-
vate) variables for each process (such as a,b,c,d,q). Communication is asyn-
chronous, with executability rules restricting the way in which process in-
terleaving is performed. For instance, the process Bob cannot start unless
channel ch is filled with a value.

5.2 Specifying Properties

The properties of quantum protocols which we are interested in reasoning
about are properties of the quantum state (e.g. which qubits are ‘active’ in
a given state, which qubits are entangled with the rest of the system) over
time. We are also interested in the outcomes of measurements, and the way
in which the values of classical variables evolve. We have elected to use
quantum computational temporal logic (QCTL) [2] for this purpose.

QCTL adds the usual temporal connectives (AX, EF, EU) of computa-
tional tree logic [8] to the propositional logic EQPL [20]. The meaning of
formulae in EQPL is expressed in terms of valuations, which are truth-value
assignments for the symbols gb,,qb,, ..., gb, corresponding to each qubit
in the system. For instance, the quantum state % (|00) + |11)) is understood
as a pair of valuations (vq, vg) for a 2-qubit system such that v; (qb,) = 0,
v1(gby) = 0, v2(gby) = 1, v2(gb;) = 1.

The formulae accepted by the QMC tool for verification allow the user
to reason about the state of individual qubits, and involve usual logical con-
nectives such as negation and implication. There are two levels of formulae:
classical formulae, which hold only if all valuations in a state satisfy them,
and quantum formulae, which are essentially logical combinations of classi-
cal formulae. For instance, the quantum conjunction in the formula ¢; A ¢2 is
only satisfied if both the classical formulae ¢; and ¢, are satisfied in the cur-
rent state. A particularly distinctive type of quantum formula is of the form
[@Q], where @ is a list of qubit variables gb;, ab;, .. .; this type of formula is

13

program Teleport;
var el,e2:qubit; ch:channel of integer;
process Alice;
var g:qubit; a,b:integer;
begin
g := newqubit; had g;
el := newqubit; e2 := newqubit;
had el; cnot el e2;
cnot g el; had g;

a := meas d;
b := meas el;
ch'a; chl!b;

end;

process Bob;
var c,d: integer;

begin
ch?c; ch?d;
if
((c=1) and (d=0)) -> X qg; break;
((c=0) and (d=1)) -> Z qg; break;
((c=1) and (d=1)) -> X g; Z g; break;
:: ((c=0) and (d=0)) -> break;
fi
end;
endprogram.
FIGURE 5

QMC source program for quantum teleportation.

14

satisfied only if the qubits listed are disentangled from all other qubits in the
system. The syntax of QCTL is given below (from [2]):

Classical formulae: @ = L|gb|la=al|aVa|aA«w
Terms: ¢ = [+1) | (#) | Re(|T),) [Tm([T),) [[
Quantum formulae: v = (#<t)|L|(aTJa)|(aYa)]|(aia)]|
[ab;, qb;, ..]

Temporal formulae: § = ~ |60 26| (EX0) | ([0 EUA)) | (AFH)

Example of Property for Verification

The requirement for the teleportation protocol is that, at the end of the proto-
col, no matter the measurement outcomes, the third qubit will be in the same
state as the first qubit was to begin with, and this qubit will be disentangled
from the rest of the system. We can express this requirement, for the case
where the input is the quantum state |0), in the input language of QMC using
the specification

finalstateproperty ([g2]) #/\ (!g2);

which corresponds to the EQPL formula [g2] A (—g2). The first part of the
formula asserts that the last qubit (g2) is disentangled from the rest of the
system, while the second part asserts that the current valuation assigns to this
qubit a value of 0. The entire formula is true if both parts are true, indicated
by the connective of quantum conjunction (we represent A in ASCII form by
#/\). We can also use a temporal formula:

property true EU (([g2]) #/\ (!q2));

5.3 Verification Algorithms and Complexity
We turn now to the algorithms which QMC uses for the verification of QCTL
formulae over protocol models.

Firstly, one should note that the logic QCTL comprises a purely proposi-
tional fragment, namely the exogenous quantum propositional logic (EQPL)
proposed by Mateus and Sernadas [20]. This fragment may be interpreted,
without much loss of generality, over a single quantum state |)). The general
definition of the semantics of EQPL has been given [20] in terms of a so-
called quantum interpretation structure, which includes not only a quantum
state 1), but also a classical state p and a means of specifying entanglement
partitions of |1). Note that in our setting we also have a global classical state,
which takes the place of p.

15

Evaluating EQPL formulae over any state |¢) arising from the simulation
of a protocol model requires being able to determine all the valuations in that
state, so that the truth value of any propositional constant (e.g.: qb; where
0 <4 < N for an N-qubit system — this constant corresponds to the state
of the ¢th qubit in the quantum state) can be computed. What this means in
more practical terms is that, in order to determine whether a given qubit has
valuation frue (1) or false (0) in the current state, it is necessary to extract all
the basis vectors which are present in the state vector expansion of |¢)). The
process of extracting all the basis vectors requires converting from the space—
efficient stabilizer array representation to the state vector corresponding to
|0}, and this conversion can take up to a maximum of 2% steps if all the 2V
basis vectors appear in |¢). Even when [¢) is a stabilizer state, it may con-
tain all of the basis vectors with non-zero coefficients. Therefore in general,
evaluating a classical formula requires solving a SAT problem, and of course
this is NP-complete. This observation seems rather discouraging given that
the process of verifying a state formula requires us to lose the efficient state
representation which is used during simulation.

However, there are cases for which we can avoid the conversion from sta-
bilizer array to state vector; for certain classes of formula we can extract the
necessary valuation information by processing the stabilizer array directly.
We have observed that certain classical EQPL formulae, which do not in-
volve the conjunction operator A, may be checkable on a given state |i) by
just examining the contents of those columns in the stabilizer array corre-
sponding to the qubits in the formula. We are still investigating optimisations
and heuristics such as this, bearing in mind that the most general EQPL for-
mulae still require performing a state vector conversion. In future, we should
probably investigate using an off-the-shelf SAT solver.

6 SYNTHESISING THE TWO APPROACHES: A TRANSLATION
FROM CQP TO QMC

In this section we present a translation from CQP processes to QMC pro-
grams. The aim of this is to provide an approach to the formal verification
of quantum protocols that combines the merits of process calculus and model
checking. We prove that the translation preserves the semantics of CQP pro-
cesses, thereby ensuring that a translated program has the same behavioural
properties as the original process. This is important because it guarantees that
the same protocol is being modelled in both languages instead of two subtly
different protocols.

16

There are several differences between the languages that result in limi-
tations or special treatment in the translation. The most significant, due to
the inability to model universal quantum computation, is the restriction to
processes that fall within the stablizer formalism. Other issues, which we dis-
cuss in more detail in the following sections, include the removal of channel
mobility, translating from polyadic to monadic channels, and allowing only
single qubit measurements. We also require that all variable names are unique
among all CQP processes; this can be achieved by alpha conversion if neces-
sary. As a result we are able to define all variables globally when translated
to QMC without risk of collision.

In the following section we define a function TPROG[] : ProcCQP —
ProgQMC where ProcCQP and ProgQMC are the sets of CQP processes
and QMC programs respectively. We follow a similar approach to the trans-
lation in [24]. The translation is separated into several steps, with each con-
secutive step providing finer detail than the previous step.

6.1 Translation Functions

A QMC program consists of one or more named processes. Although the
formal syntax of CQP does not have named processes, we choose to use them
as standard (as, for example, the processes Teleport, Alice and Bob in Figure
3) instead of introducing arbitrary names as part of the translation. In this
approach, the parallel composition primitive must use process names instead
of processes. For example, the process P.(Q) | R) would be represented by
the named processes

Process1 = P.(Process2 | Process3)
Process2 = @
Process3 = R.

We now define transcription functions from the syntactic elements of CQP
to the corresponding QMC syntax. These are: TPROG]] for the program;
TPROC(] for processes; TEXPR[] for expressions; TVAL[] for values; and
TTYPE[] for types.

The QMC Program

The complete CQP “program”, which consists of the list of named processes,
must be rewritten to a QMC program. This top-level transcription is per-
formed using the function TPROG[] define in Figure 6. The resulting QMC
program is encapsulated in a program block and contains global variable dec-

17

TPROG[Py, ..., P,] =
program Translated; gVars(]B);
TPROG[P:] - - - TPROG[P,,]
endprogram

TprOG[ProcName(z; : Ty, ...,2, : Ty) = P] =
process ProcName; [Vars(P)
begin isInvoked(ProcName)
TPROC[P]

end

FIGURE 6
Program transcription TPROG(].

larations followed by a list of process blocks. Each process block corresponds
to a named CQP process, and these are translated in turn using TPROG([].

Each QMC process declaration defines a single process containing lo-
cal variable declarations and a process body, structured with the process,
begin and end keywords. Given a single CQP process definition as input,
TPROG]] rewrites this definition into a QMC process declaration.

For processes that are invoked from (that is, nested within) other processes
the function isInvoked inserts a receive statement (Proc_ctrl?signal;,
where Proc is the process name) that is used to signal the start of execution.
For non-invoked processes the function ¢sInvoked produces no output. The
set of invoke processes is found be analysis of the structure of the CQP pro-
gram.

Processes

The CQP process body is transcribed via the function TPROC[] defined in
Figure 7. The CQP 0 process is rewritten to an empty string. The “invocation”
of parallel processes (P1 | P2) is achieved through signalling; as described
in the previous section, processes that are invoked will await a signal before
proceeding (determined by the function is/nvoked) hence sending this signal
allows the invoked process to begin execution.

18

TPROC[O] =&

TPROC[[(Pl({E) ‘ PQ@))]] =Pl_ctrl!signal; P2_ctrl!signal;

TprOC[e?[xy : T, @y : T,).P] =
TEXPR[e]1?TVAL[z1] - - - TEXPR[e]n?TVAL[z,]
TEXPR[e]_ack !ack; TPROC[P]

TpPrOC[el[e, -+ ,e,].P] = e_1:=TEXPR[e1]; ...e_n:=TEXPR[e,];
TEXPR[e]1te_1; ... TEXPR[e[n'!e_n;
TEXPR[e]_ack?ack; TPROC[P]

TprOC[{e}.P] = TEXPR[e] TPROC[P]

TPROC[(new z:[T]) P] = TPROC[P]

TPROC[(gbit) P] = x := newqubit; TPROC[P]

FIGURE 7
TPROC[]: Translation of processes.

19

TEXPR[v] = TVAL[v]
TEXPR[measure eq, ..., e,] = measTEXPR[e1],. .., TEXPR[e,];
TEXPR[ey, ... e, x=e/] = if :: (TEXPR[f]= 1) ->
TEXPR[e]TEXPR[e1], ..., TEXPR[e,]; break;
:: (TEXPR[f]= 0) -> break; £i
TEXPR[e + ¢] = TEXPR[e]+TEXPR[e]

FIGURE 8
TEXPR(]: Translation of expressions.

CQP and QMC use different models of communication; in the former,
communication is synchronous, thus an input and output action must execute
as one step. In contrast, communication in QMC is asynchronous, therefore
an output action occurs strictly, but not necessarily immediately, before a cor-
responding input action. We therefore simulate synchronous communication
in QMC by forcing the sending process to wait for an acknowledgement from
the receiving process, thus each CQP output action will be followed by an
input action when translated and similarly an output action will follow each
CQP input action.

CQP channels are polyadic (allow multiple subjects) whereas in QMC
channels are monadic (have a single subject), hence it is necessary to sepa-
rate CQP communication actions into multiple QMC actions. Each resulting
action must use a distinct channel name since channels are typed in both lan-
guages. Furthermore, QMC allows only variable names as the subject in send
and receive actions, hence it is necessary to assign any value or expression
to be sent to a fresh variable before sending. For example, the CQP action
ch![z, 3] is translated to

ch_ 1 := x; chl!ch_1; ch_2 := 3; ch2!ch_2;

Although it is not necessary to make the assignment for x in this translation,
this convention is extended to variables for the purpose of generalisation.

20

v TVAL[v] T TTYPE[T]

T,q,Cyun Xy, Chenn Int integer
0,1,... 0, 1,... Qbit qubit
X,Y,Z XY, 2 [T] channel of TTYPE[T]
H had
CNot cnot
FIGURE 9

TVAL[] and TTYPE[]: Translation of values and types.

Expressions

CQP expressions consist of values, quantum measurements, quantum oper-
ations, and arithmetic expressions. We define the function TEXPR[] in Fig-
ure 8 for the translation of expressions. Values v are translated by TVAL[]
(defined later). Quantum measurements on multiple qubits are possible in
both languages, however they follow different conventions for the assign-
ment of values to outcomes (e.g. values 0, 1, 2, 3 in CQP as opposed to pairs
(0,0),(0,1),(1,0),(1,1) in QMC). We therefore restrict the translation to
single qubit measurements (on which the resulting values correspond) and
note that this does not impact expressivness. Quantum operations are tran-
scribed with the quantum operator first, followed by a comma separated list
of qubit names. Controlled operations U are implemented using an if con-
struct. We only consider bit values (generally resulting from single qubit
measurements) for controlled operations, although this could be extended to
allow any integer using the fact that U = I for all operators in the stabilizer
formalism. Addition is the only arithmetic operator formally defined in CQP,
however the translation is easily extended to other arithmetic expressions.

Values and Types

The functions TVAL[] and TTYPE[] defined in Figure 9 are used for the trans-
lation of values and types respectively. Variable names and literal values are
left unchanged, while quantum operators are mapped to their QMC equiv-
alents as per the definition. There is no translation for arbitrary quantum
operators since only the operators in the stabilizer formalism are supported
by QMC. The types Unit, Op(1),...corresponding to arbitrary operator types
need not be translated since they are not used in QMC programs. Channel

types " [T'] make a recursive call to translate the component types. Since we

21

don’t allow channel mobility in the translation, declarations which are not
allowed in QMC such as channel of channel of T are excluded.

Variable Declarations

QMC requires variables to be explicitly declared prior to use, either in a local
process scope or globally. We take the approach of placing all variables in the
global scope to avoid issues arising from our implementation of invocation. In
particular, since channel names cannot be sent over QMC channels whereas
other variables can, it is not possible to simulate inheritance of channel names.
Instead we state the requirement that variable names must be unique, hence
scoping in QMC will have no effect.

The functions gVars and [Vars are used by TPROG] in the translation
of programs to provide global and local variable declarations respectively for
the QMC program. g¢Vars inspects the CQP program for binding operators
including ¢?[7:T (gives declarations for each x;), (new 2 [T]) (declares a
series of channels x; of type T;), and (gbit) (declares x as a qubit variable).
Signalling channels (procname_ctrl: channel of integer;) for each
process are also declared regardless of which processes will use them. Fi-
nally, gVars adds declarations for signal and ack which may be used for
signalling and acknowledgments respectively.

Since we have chosen to declare all variables globally, the only use for
[Vars is to generate declarations for the intermediate assignments that arise
from output actions; an output c![v] will results in declarations c_i: T_i
where T; are the types associated with channel c.

6.2 Example

We now apply this translation to the teleportation process defined in Figure 3.
We expect the result to resemble the QMC program in Figure 5; the result is
shown in Figure 10.

It is not surprising that the programs aren’t identical since differences
in the languages allow for alternate representations of various components.
The first point to note is the use of the signalling channels Teleport_ctrl,
Alice_ctrl and Bob_ctrl. Since the Teleport process is not nested, the
corresponding control channel is declared but never used. As it happens, in
teleportation, the addition of the control channel in Bob is superfluous be-
cause execution cannot start until a value is received from Alice.

Another change is the conditional applications of the unitary operators
by Bob; these have been compounded into one if statement in the QMC
specification, however the simplistic support for conditionals by CQP leads
to multiple statements in the translation.

22

program Translated;

var x: qubit; y: qubit; z: qubit;
el: channel of integer;
e2: channel of integer;
e_ack: channel of integer;
Teleport_ctrl: channel of integer;
Alice_ctrl: channel of integer;
Bob_ctrl: channel of integer;
r: integer; s: integer;
signal: integer; ack: integer;

process Teleport;

begin
y := newqubit; z := newqubit;
had z; cnot z y;

Alice_ctrl!l; Bob_ctrl!l;

end;

process Alice;

var e_1l: integer; e_2: integer;

begin
Alice_ctrl?signal;
x := newqubit; had x; cnot z x; had z;
e_1l := meas x; elle_1; e_2 := meas z; e2le_2;

e_ack?ack;
end;
process Bob;
begin
Bob_ctrl?signal;
el?r; e2?s; e_ack!l;
if :: (r = 1) -> Z y; break;

:: (r = 0) —> break; fi
if :: (s = 1) -> X y; break;
(s = 0) -> break; fi
end;
endprogram
FIGURE 10

Translated version of quantum teleportation.

23

’ * A
CC’ Hécc HCCC

\LT i’T l’f
Co ChH—sCh

x “ e

FIGURE 11
The requirement for a transition 7 to be semantics preserving.

6.3 Correctness of the Translation

In order to argue that a QMC program translated from CQP has the same
meaning as the original CQP process, it is necessary to show that the se-
mantics of CQP processes is preserved by the translation function — this is
equivalent to saying that the result of translating a CQP process into QMC
then executing it should be identical to executing it in CQP then translating
the result to QMC [24].

The operational semantics of both languages are defined in terms of single
step transitions from one configuration to another. A CQP configuration is a
tuple (q1,- .., g, = |1); ¢; P), which includes, alongside the process P, the
assignment of quantum names to a quantum state |}, and a channel list ¢.
A QMC configuration is a tuple (P, k, 2, |1)), which includes the process P
with global () and local (X) registers and a quantum state |1)).

The relationship between configurations of CQP (C¢) and QMC (Cg),
that is required for a semantics preserving translation 7, is illustrated in Fig-
ure 11. In the ideal case, each CQP transition Cc — ¢ C, is matched by
a QMC transition 7 (C¢) —¢ T (C{;). To account for the peculiarities of
the translation we instead use a notion of semantic equivalence; that is, there
exists a configuration C7, such that C, —% Cf (—§ represents zero or
more transitions) and 7 (Cc) —¢) 7(C¢) and T(Cq) —¢ T(CF). This
accounts for cases such as output where temporary variable assignments are
used, and where extra steps are introduced such as process signalling.

Figure 11 refers to a translation of configurations, 7, which we must define
in order to consider the preservation of semantics. The extension from the
syntactic translation, given by the function TPROG[], to the translation 7 is a

24

straightforward one; let

evalyp((Tp(P), T(8), Z5 (q1; - - -, ans P), Ty ([9))))

where 7p translates the process using TPROG(], 7, populates the global store
with the channel names from ¢, 7, populates the local stores with the qubit
variables in each process, and 7y, is an identity map on the quantum state. Not
all variables can be determined directly from the configuration, but are found
by analysis of the program; as a result of the translation by TPROG[], variable
declaration statements are created for these remaining variables. evalyp rep-
resents the execution of these variable declarations, thereby fully populating
the global and local stores.

Theorem 1 (Preservation of Semantics). Let Co = (q = |¢); ¢; P). If P is
well typed and Cc — ¢ C{ then there exists C{, such that Cf, —% Cf
and T(Cc) —¢ T(C¢) and T (Cp) —§ T(CE).

Proof. By induction on the derivation of Cc — ¢ Cf.. In this paper we only
show the case for communication; other cases follow similar reasoning.

Let Co = (03 ¢[0,).Q | ¢?[#:T, 7:Qbit].R) where o = q1,...,qr =
|1}, © are non-qubit values and § = q¢1, . .., gy for n < r. Then we have the
transition

The translation of C¢ is

T(Ce)=(c1: =015+, Crm "= U Cmt1 = q1; « -+ s Cntn °= Qn;
clley;. .5 e(m + n)leman; cack Tack; TPROC[Q]
| c1?xy;. . .cm?azy;e(m+ 1)?y1;. . c(m 4+ n)Tyn;
Cack!1; TPROC[R], &, (0@, oR), [¥))

Let Cg = 7 (C¢). The first transitions from this QMC configuration are the

25

assignments to temporary variables (c1, . . ., Cyn+n) prior to sending.
Co —q (c2:=v2;...,Cm = Um;Cmt1 = q1} -+, Cmgn = qn;
cllers. . se(m + n)leman; cack Tack; TPROC[Q)]
| 1?7215, ..cm?@m;c(m + 1) ?y1; ... c(m + 1) ?Yn; Cack!1;
TPROC[R], k, (oqle1 = v1],0r), [4))
—>Zz (Cm41 = Q15+, Cmgn *= G
cllers. . 5e(m + n)eman; cack Tack; TPROC[Q)]
| 1?7215, ..cm?@m;e(m + 1) ?y1; ... c(m + 1) ?Yn; Cack!1;
TPROC[R], v, (5gler = 1] - [em = V], o). [1))
—0 (clleg;. . se(m 4 n)lem) cack?ack; TprOC[Q]
| c1?zy;...om?zy;c(m 4+ 1)?y1;. . c(m 4+ n)?yn; Cack!1;
TPROC[R], K, (og[c1 — v1] -+ - [em — U]
lqr = nulll[epiy = 1] -+~ [gn = nulllcingn = 1], o), [¢))
The ordering of the next sequence of transitions, in which one process sends
and the other receives the values, is non-deterministic due to the possible
interleavings. We show one possible execution and note that all executions
will arrive at the same final configuration.
—q (2leg;. .. se(m + n)lemin; cack Tack; TPROC[Q]
| 1?21, .. cm?@m;c(m + 1)%y1; ... c(m + 1) Tyn; Cack!1;
TPROC[R], k[cl — v1], (ogler — v1] -+ [em — U]
[q1 = null][crn i1 = 1] -+ [gn = null][emyn —], 0R), [¥))
—q (2legs. .. se(m + n)lemin; cack Tack; TPROC[Q]
| 27295 ... cm?@m;c(m + 1)%y1; ... c(m + 1) Tyn; Cack!1;
TPROC[R], &, (0g[c1 — v1] -+ - [em — Vm][g1 — null][cpmyr +— 1]
- lgn = nulll[emyn = 1], orlry = v1]), [¥))

—g (clm+Dlepprs. . se(m + n)lemin; caac Tack; TPROC[Q]
| e(m+1)?y1;...c(m 4 n)?yn; cack!1; TPROC[R],
K, (ogler = v1] -+ [em — v]lar — null][epmg1 — 1]

< lgn = nullllemin = 0l op[rr o] [T = o)), [¥))
—¢ (cac?ack; TPROC[Q] | cack!1; TPROC[R],
K, (ogler ¥ vi] -+ [em — vp]l@r — null] - - - [g,, — null],

orlrr = 1] [2m = o]y = 1 [yn = nl), [9)

26

The final transitions are for the message acknowledgement, preventing ()
from proceeding until the communication is complete.

—¢ (TePrOC[Q] | TPROC[R],
K, (ogler = vi] -+ [em — vmllgr +— null] - - [g, — null][ack — 1],

orlzr = vr] - [Zm = vmllyr = 1) [yn = n]), [4)

Finally, let us rename the variables in process R (we can take the substitution
of names inside TPROC[R]) to give

Co = (TeProC[Q] | TPROC[R{v, ¢/, y}],

K, (ogler — v1] -+ [em — v @1 — null] - - - [g, — null][ack — 1],
orlvr = vi] - [Um = vmlgn = 1 [gn > n]), [¥))
Due to type preservation, we have that 7,(q1,. .., g, Q) does not include

qubits ¢, which are instead provided by 7, (¢1, - - - , ¢, R). We have

T(Cgp) = (Teroc[Q] | TPrROC[R{D, 3/, Y},

(0qlgr = null] - [gn = null], or[gr = 1] -+ - [gn — n]), [¢)))
The temporary variables cy, . . ., ¢;,, do not appear in (), hence we can con-
clude that 7 (C¢) = Cq,. O

7 CONCLUSIONS AND FUTURE WORK

Process calculus and model checking are two formal methods that have proved
successful for the verification of classical systems. We believe that similar
benefits are likely to be realised through the application of these techniques
to quantum communication systems.

In this paper we have described an approach to the verification of quan-
tum protocols using both process calculus and model checking. The lan-
guage CQP extends the classical m-calculus with the inclusion of primitives
for quantum information, and the QMC tool uses the stabilizer formalism to
offset the complexity of simulating quantum computations on classical com-
puters.

The major advantage of our approach is in the combination of techniques,
enabling us to reap the benefits of both CQP and QMC. In Section 6 we
defined a translation from CQP to the modelling language of QMC which
facilitates the application of process calculus techniques and model checking

27

using a single specification. We have formally specified and proved the re-
quirements for the semantic correctness of this translation (Theorem 1). In
Section 6.2 we demonstrated the translation by converting a CQP model of
quantum teleportation into QMC.

Further work will include the development of techniques for equational
reasoning about quantum processes in CQP. Some authors of this paper have
made significant progress towards a congruence relation for quantum pro-
cesses, which will mark a significant step in the development of quantum pro-
cess calculus. These techniques can then be used in conjunction with model
checking in QMC, via this translation, to verify properties of quantum pro-
tocols, and eventually, practical quantum cryptography and communication
systems.

Both CQP and QMC provide scope for extending their individual func-
tionality, for example, incorporating complex data structure and recursion. In
particular, support for arbitrary quantum operators in QMC would allow us
to consider attacks on cryptographic protocols that fall outside the stabilizer
formalism.

ACKNOWLEDGEMENTS

The authors acknowledge support from the EPSRC grant no. EP/E00623X/1
(Semantics of Quantum Computation). The second author is partially sup-
ported by the EPSRC grant no. EP/F020813/1 Quantum Computation: Foun-
dations, Security, Cryptography and Group Theory. The third author would
like to acknowledge the support from the Warwick Institute for Financial
Computing and from the Czech Grant Agency, grant no. GA201/07/0603.
The fourth and fifth authors were partially supported by the EU Sixth Frame-
work Programme (Project SecoQC: Development of a Global Network for
Secure Communication based on Quantum Cryptography).

REFERENCES

[1] Scott Aaronson and Daniel Gottesman. (2004). Improved simulation of stabilizer circuits.
Physical Review A (Atomic, Molecular, and Optical Physics), 70(5):052328.

[2] P. Baltazar, R. Chadha, and P. Mateus. (2008). Quantum computation tree logic —
model checking and complete calculus. International Journal of Quantum Information,
6(2):219—236.

[3] C. H. Bennett and G. Brassard. (December 1984). Quantum cryptography: Public key
distribution and coin tossing. In Proceedings of IEEE International Conference on Com-
puters, Systems and Signal Processing, pages 175-179, Bangalore, India.

28

(4]

(51

(6]

(71
(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]

[18]

[19]

[20]

[21]

[22]

[23]

Charles H. Bennett, Gilles Brassard, Claude Crépeau, Richard Jozsa, Asher Peres, and
William K. Wootters. (Mar 1993). Teleporting an unknown quantum state via dual
classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70(13):1895-1899.

Edmund M. Clarke, Orna Grumberg, and Doron A. Peled. (2000). Model Checking. MIT
Press.

Artur K. Ekert. (Aug 1991). Quantum cryptography based on bell’s theorem. Phys. Rev.
Lett., 67(6):661-663.

C. Elliott. (July 2004). Quantum cryptography. IEEE Security & Privacy, 2(4):57-61.

E. Allen Emerson. (1990). Temporal and modal logic, volume B: Formal Models and
Semantics, pages 995-1072. MIT Press.

Yuan Feng, Runyao Duan, Zhengfeng Ji, and Mingsheng Ying, (2006). Probabilistic
bisimilarities between quantum processes. arXiv:cs.LO/0601014.

Simon Gay, Rajagopal Nagarajan, and Nikolaos Papanikolaou, (2005). Probabilistic
model—checking of quantum protocols.

Simon J. Gay. (2006). Quantum programming languages: survey and bibliography. Math.
Struct. in Comp. Sci., 16(4):581-600.

Simon J. Gay and Rajagopal Nagarajan. (2005). Communicating Quantum Processes. In
POPL °05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 145-157, New York, NY, USA. ACM Press.

Simon J. Gay and Rajagopal Nagarajan. (2006). Types and Typechecking for Communi-
cating Quantum Processes. Math. Struct. in Comp. Sci., 16(3):375-406.

Simon J. Gay, Nikolaos Papanikolaou, and Rajagopal Nagarajan. (July 2008). QMC:
a model checker for quantum systems. In CAV 2008: In Proceedings of the 20th Inter-
national Conference on Computer Aided Verification, volume 5123 of Lecture Notes in
Computer Science, pages 543-547. Springer-Verlag.

Daniel Gottesman. (1998). The heisenberg representation of quantum computers. In
International Conference on Group Theoretic Methods in Physics.
Jozef Gruska. (1999). Quantum Computing. McGraw Hill.

M. Kwiatkowska, G. Norman, and D. Parker. (September 2001). PRISM: Probabilis-
tic symbolic model checker. In P. Kemper, editor, Proc. Tools Session of Aachen 2001
International Multiconference on Measurement, Modelling and Evaluation of Computer-
Communication Systems, pages 7-12. Available as Technical Report 760/2001, University
of Dortmund.

Marie Lalire, (2005). A probabilistic branching bisimulation for quantum processes.
arXiv:quant-ph/0508116.

Marie Lalire. (2006). Relations among quantum processes: bisimilarity and congruence.
Math. Struct. in Comp. Sci., 16(3):407-428.

P. Mateus and A. Sernadas. (2006). Weakly complete axiomatization of exogenous
quantum propositional logic. Information and Computation, 204(5):771—794.

Dominic Mayers. (2001). Unconditional security in quantum cryptography. J. ACM,
48(3):351-406.

Rajagopal Nagarajan and Simon J. Gay, (2002). Formal verification of quantum protocols.
arXiv:quant-ph/0203086.

Michael A. Nielsen and Isaac L. Chuang. (2000). Quantum Computation and Quantum
Information. Cambridge University Press.

29

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

Hanne Riis Nielson and Flemming Nielson. (1999). Semantics with applications: A
formal introduction. Revised edition; original published by John Wiley & Sons, 1992.

Nikolaos Papanikolaou. (2009). Model Checking Quantum Protocols. PhD thesis,
Department of Computer Science, University of Warwick.

David Park. (1981). Concurrency and automata on infinite sequences. In Proceedings
of the 5th GI-Conference on Theoretical Computer Science, pages 167-183, London, UK.
Springer-Verlag.

Eleanor Rieffel and Wolfgang Polak, (1998). An introduction to quantum computing for
non-physicists. arXiv:quant-ph/9809016v2.

P. Ryan, S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe. (2001). Modelling and
Analysis of Security Protocols. Addison Wesley.

P. W. Shor. (1994). Algorithms for quantum computation: discrete logarithms and factor-
ing. In SFCS *94: Proceedings of the 35th Annual Symposium on Foundations of Computer
Science, pages 124—-134, Washington, DC, USA. IEEE Computer Society.

W. K. Wootters and W. H. Zurek. (1982). A single quantum cannot be cloned. Nature,
299:802—803.

Mingsheng Ying, Yuan Feng, and Runyao Duan, (Jul 2007). An algebra of quantum
processes. http://arxiv.org/abs/0707.0330v1.

Mingsheng Ying, Yuan Feng, Runyao Duan, and Zhengfeng Ji. (2009). An algebra of
quantum processes. ACM Trans. Comput. Logic, 10(3):1-36.

30

