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Abstract

This paper presents a framework for analysis and comparison of privacy policies expressed in
P3P (Platform for Privacy Preferences). In contrast to existing approaches to policy analysis,
which focus on demonstrations of equality or equivalence of policies, our approach makes it
possible to check for refinement between policies. We automatically generate a CSP model from
a P3P policy, which represents the policy’s intended semantics; using the FDR model checker,
we then perform various tests (using process refinement) to determine (a) whether a policy is
internally consistent, and (b) whether a given policy refines another by permitting similar data
collection, processing and sharing practices. Our approach allows for the detection of subtle
differences between practices prescribed by different privacy policies, the comparison of relative
levels of privacy offered by different policies, and captures the semantics of policies intended in
the original P3P standard. The systematic translation of policies to CSP provides a formal means
of reasoning about websites’ privacy policies, and therefore the practices of various enterprises
with regards to personal data.
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1. Introduction

In our digital age more and more of society’s benefits and services are provided online; for
access to these, we find ourselves constantly being asked for personal information. Meanwhile,
enterprise information systems are amassing ever growing digital piles of data pertaining to in-
dividuals, data which is often regarded as having huge commercial value. Databases can be
indexed, searched and sorted as dictated by enterprise needs, although data processing practices
are always expected to comply with current law and data protection agreements. Unfortunately
there seems to be a big gap between customers’ expectation of privacy and the actual privacy
provided through common business practice.

Website users are often unaware of and unconcerned by any privacy policy that may be in
effect during an online transaction. Where such a policy is expressly provided, it often takes the
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form of a lengthy legal document which is presented to the user for him or her to accept or reject
completely. Interestingly, there is no provision for the user to opt out of individual clauses of
such a policy, and he or she is expected to grant ‘blanket consent’ for all uses of their data set out
in the policy document. Some websites provide the ability to opt in or opt out of being contacted
for marketing purposes, but the controls available are not very fine grained and only exist to
satisfy the minimum requirements of the law (e.g. the Data Protection Act in the UK). There is
an increasing body of work on developing better privacy controls for users, see for example the
PRIME [1], PrimeLife [2] and EnCoRe [3] research projects.

The Privacy Preferences Platform Project (P3P) [4] is focused on developing machine read-
able XML for expressing websites’ privacy policies and users’ privacy preferences; this is in-
tended to enable the use of privacy-aware browsers and to allow websites to collect and process
information they may require in a fashion that respects user privacy. The policy languages de-
veloped within P3P so far are lacking a formal semantics and hence are prone to inconsistency
and ambiguity [5]. XACML [6] is a language for expressing role-based access control, which
has been augmented with a “profile” for expressing privacy policies [7], but until recently lacked
a formal semantics (the latest version, XACML 2.0, has a draft formal semantics). The lack
of a widely accepted semantics for privacy policies is the main source of difficulty in policy
comparison.

We are interested in the use of privacy policies as a means to protecting personal data in
cyberspace. As we argue below, it may be desirable to compare two related policies, particularly
when these policies are expressed using different languages. However, even when two policies
are expressed in the same language, it is possible that they will differ syntactically but supposedly
express the same intention. If mistakes are made in the comparison of privacy policies this could
result in the wrong policy being implemented and exposure to risk.

Policy refinement [8] is a term used to refer to the process of synthesising lower level poli-
cies from policies expressing higher level concerns. An enterprise typically has to conform with
many different sets of policies and, for any particular context, such as privacy, there will be a
policy hierarchy that specifies the order and priority of policies which must be enforced. In such
a hierarchy one will find policies which are all intended for essentially the same goal, but they
differ in the the details; a higher-level policy may stipulate, for instance, that adequate protec-
tions on customer data must be in place, while a lower-level policy would detail the encryption
mechanisms and access controls used to protect such data. The lower-level policy is said to refine
the higher-level one when it only permits data processing permitted by the higher-level policy.
Our focus on refinement as opposed to equality of policies is justified by the need to check that
one policy is a valid implementation of another, as might arise in the setting of a supply chain.
Consider, for example, the situation where a user shares personal data with an organisation and
in doing so stipulates a range of preferences on how that data should be handled. If the data is
passed onto a third party it will be necessary to ensure that the policy adopted by the third party
offers at least as much privacy as the original organisation.

Our intention in this paper is to connect the concept of policy refinement (particularly in the
context of privacy) with the notion of refinement as used in process algebra, by developing a
translation of P3P policies into CSP processes which can be directly compared using the FDR
model checker1 [9, 10]. Using this translation, one can perform three types of analysis:

1FDR is a product of Formal Systems (Europe) Ltd (http://www.fsel.com) and the University of Oxford
(http://web.comlab.ox.ac.uk/projects/concurrency_tools).
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• Comparison of two given P3P policies as to the data collection, processing and sharing
practices which they each prescribe.

• Comparison of a given P3P policy with an enterprise’s higher-level privacy goals (and
possibly with customer requirements).

• Consistency checking of a given P3P policy, to prevent ambiguities.

The translation of policies to CSP gives them a uniform representation which makes it con-
venient to reason about privacy requirements and dependencies between policy rules. With FDR
it is then possible to automatically check that overall goals are being met; if they are not, FDR
produces counterexamples which can be used to determine sources of errors and inconsistencies.

While we are aware of some existing work on direct comparison of P3P policies (see sec-
tion 1.1), we believe that our approach is particularly well–suited to the task of policy compar-
ison, in that it permits a fine grained analysis: rather than just comparing the overall effects of
two given policies, we compare the collection, processing and sharing practices of each policy
for each data item individually. Furthermore, we take into account the intended semantics of
the predefined constants in the P3P standard; most existing policy comparison approaches are
syntactic, in that they do not make any effort to capture the dependencies and possible conflicts
between the values allowed in policy rules.

It is worth noting here that, as of this writing, the latest (and final) version of P3P is 1.1 and,
while this language is still in use for specifying website privacy policies, it has been somewhat
superseded by the XACML standard. However, the wide availability of tools such as the IBM
P3P Policy Editor [11] and the Privacy Finder search engine [12] make it easy to edit, manage
and locate real-world privacy policies, and the language is still widely used. For these reasons,
P3P policies are worthy of further study and analysis. Future work is likely to include extending
the techniques presented in this paper to other policy languages.

1.1. Related Work

Related work includes research on the formalisation and automatic processing of P3P and
XACML policies. There is also purely theoretical work on mathematically describing access
control and its properties, though there is a lack of formal work on the analysis of privacy.

May et al. [13] define ‘policy relations’ in an analogous way to bisimulation for concurrent
processes; their high-level semantic framework is used for comparing P3P policy outcomes.
Their approach is mathematically elegant as it avoids comparing specific actions permitted by a
policy, and focuses only on the outcomes of applying it; however it corresponds to an equivalence
check between policies, rather than a more fine-grained refinement check.

Yu et al. [14] have proposed a relational semantics for P3P, in an effort to give unambiguous
meaning to syntactically different expressions of a single policy. Their ideas are complementary
to the approach we propose, although they focus only on internal policy consistency. Known
ambiguities and problems with P3P policies have been studied by Hogben [5], and these issues
inspired both [14] and the present work.

Stamey and Rossi [15] applied Latent Semantic Analysis techniques to interpret and com-
pare sets of legal privacy policies (expressed in natural language, of course). They investigate
linguistic patterns arising in the texts of privacy policies, identifying high-frequency words and
semantic similarities.
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Bryans [16] builds on earlier work by Ryan [17] and develops a CSP model of XACML
access control policies. The emphasis in this paper is on applications related to separation of
duty constraints and workflow.

Fisler et al. [18] presents the Margrave tool for analysing and reasoning about XACML access
control policies; Margrave translates policies into a decision diagram representation which allows
a user to pose queries about the policy and its properties.

Zhang et al. [19] describes a tool and associated formalism, RW, for writing specifications of
access control policies from which valid XACML can be generated.

Gunter et al. [20] defines a formal privacy system as a mathematical object, namely a labelled
transition system with a set of predefined actions that arise in the context of location-aware
services.

May et al. [21] extends [20] by incorporating notification and logging operations and by
proposing a formal translation to Promela, the input language of the SPIN model checker.

Fournet et al. [22] uses process algebra to express a logic of authorisation, while Walker [23]
develops a type system for reasoning about security policies; both approaches demonstrate how
authorisation or access control can be formalised.

Becker et al. [24] have designed a declarative language, S4P (or SecPAL4P) for expressing
privacy preferences and policies. They provide a formal semantics and proof rules for their
language. They do not seem to define a direct mapping from existing formalisms such as P3P or
XACML into their language, however.

1.2. Outline of this paper

There are five parts to this paper. Section 2 describes P3P policy structure, constants and
intended semantics; this leads to a discussion of what it means for a given P3P policy to refine
another. Section 3 discusses how we model a P3P policy in CSP, and the tool we have developed
for performing the conversion automatically. Then in Sections 4 and 5 we discuss the process
refinement checks that we can perform on a policy and on a pair of policies, respectively, using
FDR. Finally, Section 6 concludes with a discussion of future work.

2. Understanding P3P Policies and their Semantics

First it is necessary to pin down exactly what we mean by the term ‘P3P policy,’ since the
W3C Recommendation [4] does define a number of similar terms. A P3P-compatible website
that collects and uses personal data will have associated with it a policy reference file, which is
a listing of all the policy files that apply to the different pages in the site. P3P is an instantiation
of XML, so both files are expressed in this format, using only the tag names and values defined
in the Recommendation. A policy file may generally contain any number of actual policies. For
the purposes of this paper we work only with policy files consisting of a single policy, and this
assumption is also made by the tool described in Section 3. However, the technique can generally
handle any number of policies within a policy file.

2.1. Structure of an Individual Policy

A policy defines a set of rules, or statements, that specify which processing and sharing
practices are permitted for different types of data that the website may collect. Statements will
refer to types of data explicitly referred to in the Recommendation, namely dynamic data, user
data, business data and third party data. For each of these types of data the Recommendation
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defines a schema, and there are a number of predefined constants which are used in actual policies
(see section 2.2), although user-defined types are also allowed. For the needs of this paper we
assume that policies only use predefined types. The predefined types are termed ‘data groups’.

A statement includes:

• a <DATA-GROUP> element,

• a <PURPOSE> element,

• a <RECIPIENT> element,

• a <RETENTION> element,

• (optionally) a <CONSEQUENCE> element,

• (optionally) other extensions.

A statement is intended to express a policy rule that, it is permitted for the website to collect a
datum belonging to the given data group for the specified purpose, for a period of time defined by
<RETENTION>, and for distribution only to those entities defined in the <RECIPIENT> element.
We ignore optional elements in this paper.

2.2. Predefined Constants

The values that are permitted in the elements of a statement are the following (we do not
include the data schema, which defines the possible values for data groups, for lack of space):

• for <PURPOSE>:

– current, admin, develop, tailoring, pseudo-analysis, pseudo-decision, individual-
analysis, individual-decision, contact, historical, telemarketing, other-purpose

• for <RECIPIENT>:

– ours, delivery, same, other-recipient, unrelated, public

• for <RETENTION>:

– no-retention, stated-purpose, legal-requirement, business-practices, indefinitely

While an explanation of each value is given in the Recommendation, it should be noted that
the purposes in particular are subject to some degree of interpretation, in that a website owner
may choose quite loosely among these values. The different values for <RECIPIENT> describe
the nature of an entity with whom data is being shared; the value ours applies when data is to be
used exclusively by the owner of the website and by third parties who need it for a stated purpose
only. The value delivery applies when data is to be shared with service providers whose practices
are unknown and may differ from those of the site owner. Values same and other-recipient are
used for data that may be shared with third parties whose data practices are either identical or
different, respectively, to those of the site owner, and the other values are special cases.

For the values that describe the data retention practices, it is interesting to note that there is
no numerical value (such as, for instance, a 30-day limit on the use of data). The values range
from no retention at all to indefinite retention.
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<POLICY xml:lang="en">

<STATEMENT>

<PURPOSE><admin/>

<current/>

<develop/>

</PURPOSE>

<RECIPIENT><ours/></RECIPIENT>

<RETENTION><stated-purpose/>

</RETENTION>

<DATA-GROUP>

<DATA ref="#dynamic.clickstream"/>

<DATA ref="#dynamic.http"/>

</DATA-GROUP>

</STATEMENT>

</POLICY>

Figure 1: Policy A

<POLICY xml:lang="en">

<STATEMENT>

<PURPOSE><admin/>

</PURPOSE>

<RECIPIENT><ours/></RECIPIENT>

<RETENTION><stated-purpose/>

</RETENTION>

<DATA-GROUP>

<DATA ref="#dynamic.clickstream"/>

<DATA ref="#dynamic.http"/>

</DATA-GROUP>

</STATEMENT>

</POLICY>

Figure 2: Policy B

While the Recommendation does not define any relationships between these predefined val-
ues, we believe that the semantics of the language would be significantly less ambiguous if the
permitted recipients and retention practices in a given policy depended on the purpose(s) for
which data collection is taking place.

2.3. Examples of Policies and Refinement

In this section we will use two example P3P policies to explain the notion of policy refine-
ment. As we will see, a purely syntactic comparison would treat these policies as being different
from one another, esp. in terms of stated purpose; we show that there is a relationship of refine-
ment between the two. The example should make clear why refinement is useful in this context,
and more effective as a comparison tool than a notion of equality or equivalence of policies.

Figure 1 shows a policy, Policy A, consisting of a single statement that applies to two different
data groups, #dynamic.clickstream and #dynamic.http. These data groups refer to the data
available on a web site server log about the access requests it has received. In particular,

“The clickstream element is expected to apply to practically all Web sites. It repre-
sents the combination of information typically found in Web server access logs: the
IP address or hostname of the user’s computer, the URI of the resource requested,
the time the request was made, the HTTP method used in the request, the size of the
response, and the HTTP status code in the response.” [4]

Policy A requires that these data groups be collected for administrative, current, and devel-
opment purposes, for a period of time determined by the enterprise’s stated purpose, and sharing
is only permitted with third parties who will use it for a stated purpose (note the meaning of the
constant ours, which does in fact allow limited sharing).

Policy B in Figure 2 has a statement that applies to the very same data groups. It may have
been defined at a later stage to Policy A, when the enterprise completed deployment of a new
version of its website. How does it compare to Policy A?
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If these two policies were compared directly using existing approaches, such as policy re-
lations [13], or by means of a syntactic comparison, they would be found to be substantially
different. While the two policies are certainly not equal, since they differ in the number of pur-
poses for which collection is being performed, there is clearly a similarity between the two, in
that everything policy B permits is also permitted by policy A. We say that Policy A is refined by
Policy B and write A v B.

The approach to policy comparison advanced in the following sections attempts to take into
consideration meanings and intentions of the predefined constants.

3. Modelling P3P Policies in CSP

We have developed tool support2 for translating a P3P policy into a CSP model that can
be checked using FDR. In this section we present the structure of such models and discuss our
design choices.

For definitions of the CSP notations, including among others external choice (P 2 Q), in-
dexed external choice (2i Pi), parallel composition (P ‖ Q), the predefined CHAOS process
and more we refer the reader to the standard reference [9]. We assume familiarity with these
notations and concepts.

Given a P3P policy file, which contains a single privacy policy, our translator extracts all the
different statements, and generates definitions of CSP processes corresponding to each statement.
The first (top-level) process corresponding to a P3P statement will be referred to as a rule process.
To represent the policy as a whole, we will use a single process combining together all rule
processes in parallel composition.

3.1. Modelling P3P Statements

From the kth P3P statement in a given policy, only the DATA-GROUP, PURPOSE, RECIPIENT
and RETENTION elements are extracted. The process RULEk,dg

0 contains a collect event, which
corresponds to the collection of an item in data group dg, for purposes P = {pn} (n ≥ 1) and
retention t, with the possibility of sharing to recipients r, and is defined as follows:

RULEk,dg
0 = collect.dg.p1.r.t → RULEk,dg

1

2 collect.dg.p2.r.t → RULEk,dg
2

...

2 collect.dg.pn.r.t → RULEk,dg
n

For the specified purposes pi ∈ {p1, . . . , pn}, with i ≤ n, in the P3P statement, we de-
fine RULEk,dg

i as a state in which processing of the data dg for purpose pi, followed by further
collection, further processing for purpose pi, or sharing with recipient r (through RULEk,dg

n+1 ) is
permitted.

2This is a Python program, which is available on request.
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RULEk,dg
i = process.dg.pi.t →

(
RULEk,dg

0 2 RULEk,dg
i 2 RULEk,dg

n+1

)

We define RULEk,dg
n+1 as a state in which sharing with recipient r is possible, followed by either

further collection, further processing, or further sharing:

RULEk,dg
n+1 = share.dg.r →

(
RULEk,dg

0 2

(
2i RULEk,dg

i

)
2 RULEk,dg

n+1

)
In order to handle the retention value specified in P3P statements, we include in our model

for each statement a clock, or counter. A full description of a P3P statement is given by synchro-
nising the top-level rule process with this counter. At time instant 0, the counter only permits
collection events to be triggered. Thus we have the counter process:

COUNTINIT(d,P, r, t) = COUNT(val of (t), d,P, r, t)

The use of a counter is a way of addressing the fact that standard CSP does not allow for time
constraints and specifications. If we had chosen to use the formalism of Timed CSP [25] this
could have been avoided, but FDR only supports untimed CSP, so this would not be practical for
our purposes.

We have taken the convention of assigning the following numerical values to retentions:

val of (no retention) = 1
val of (stated purpose) = 2

val of (legal requirement) = 5
val of (indefinitely) = 100

val of (business practices) = 10

Note that our choice of numerical values for these constants is based on our interpretation of
the P3P standard and has been validated through discussions with legal and regulatory experts.
Should the intended interpretation of the constants change or require adjustment, this is easy to
implement.

The COUNT process specifies when different events are permitted, with the intention that
processing and sharing events should only be possible while a collected data item can be retained.
Once the time for which a data item is available has lapsed, processing and sharing are no longer
possible, and the item should be collected anew. There is a separate instance of COUNT for
every combination of d, P, r, t. The process counts downwards to ensure a bounded state space
in the model, which is necessary for model checking. This is expressed in the following process
definition.
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COUNT(cnt, d,P, r, t) = cnt > 0 &
(
(2p collect.d.p.r.t → COUNT(cnt, d,P, r, t))

2 (2p process.d.p→ COUNT(cnt − 1, d,P, r, t))

2 share.d.r → COUNT(cnt − 1, d,P, r, t)
)

2 cnt = 0 &
(
2p collect.d.p.r.t → COUNTINIT(d,P, r, t)

)

So, a P3P statement for data group dg, with purposes P = {pi, i ≤ n}, recipient r and retention
t is fully defined in CSP by a process of the form:

RULEk,dg = RULEk,dg
0 |[∀ p ∈ P • collect.d.p.r.t, process.d.p, share.d.r ]|COUNTINIT(d,P, r, t)

Example. The definitions given in the previous section are easily understood by way of an exam-
ple. Suppose we wish to express the statement contained in Policy A (see Figure 2) in CSP. The
statement in Policy A applies to two data groups, dynamic clickstream and dynamic http. The
corresponding CSP code for dynamic clickstream data group is shown below, where we have
abbreviated RULE1,dynamic clickstream to RULEa for clarity.

RULEa = RULEa
0 |[∀ p ∈ {admin, current, develop} •

collect.dynamic clickstream.p.ours.stated purpose,

process.dynamic clickstream.p.ours.stated purpose,

share.dynamic clickstream.ours]|
COUNTINIT(dynamic clickstream, {admin, current, develop}, ours, stated purpose)

RULEa
0 = collect.dynamic clickstream.admin.ours.stated purpose→ RULEa

1

2 collect.dynamic clickstream.current.ours.stated purpose→ RULEa
2

2 collect.dynamic clickstream.develop.ours.stated purpose→ RULEa
3

RULEa
1 = process.dynamic clickstream.admin.ours.stated purpose

→ (RULEa
0 2 RULEa

1 2 RULEa
4)

RULEa
2 = process.dynamic clickstream.current.ours.stated purpose

→ (RULEa
0 2 RULEa

2 2 RULEa
4)

RULEa
3 = process.dynamic clickstream.develop.ours.stated purpose

→ (RULEa
0 2 RULEa

3 2 RULEa
4)

RULEa
4 = share.dynamic clickstream.ours

→ (RULEa
0 2 RULEa

1 2 RULEa
2 2 RULEa

3 2 RULEa
4)
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3.2. Modelling a Policy

A policy is defined by the totality of statements it contains, and therefore can be expressed as
the parallel composition of all the RULEk,dg processes for all k and all dg:

POLICY = |||k,dg RULEk,dg

With this definition in hand we can perform analyses of the kind discussed in the Introduction.
The analyses rely on the notion of refinement as conventionally used in process algebra. We

use the symbol v to denote a relation of refinement between two processes. When there is no
subscript this may denote either traces refinement (normally vT ) or failures refinement (normally
vF) depending on the context. We review the definition of traces refinement in Section 5.

4. Consistency Checking

As we have noted, the semantics of P3P lack a formal, unambiguous definition, and this has
been the source of criticism. Using the CSP model of a P3P policy presented in the previous
section, we can perform checks using the FDR model checker that the stipulations of a policy
are plausible and compatible with the P3P Recommendation. While the Recommendation lists
a number of predefined values for the PURPOSE, RECIPIENT and RETENTION specified in any
statement, it does not explicitly describe dependencies and potential conflicts between those
values. It is assumed by the authors of the Recommendation that users of the language will make
sensible and compatible choices when authoring policies; we feel that consistency checks are
not only necessary to ensure syntactic correctness of a policy, but that they can be used to warn
against dangerous or implausible policy statements.

For instance, the Recommendation specifies that when no retention is specified for a given
data group, the data in question should be used only for a single online transaction and must
be subsequently destroyed. When this is given as the retention policy, it should by definition
preclude the possibility that the website owner will use the data for any other purpose than
those corresponding to tailoring and current. Other predefined values for PURPOSE must not
be permitted if data is not retained for a longer time, since they all assume that the data being
collected will be held for further processing. The P3P Recommendation does not explicitly
disallow other purposes for data collection, although this is clearly necessary as the resulting
statements would be implausible.

Consider how this type of inconsistency can be prevented in the CSP model. We can define
a process TIMELY(d), for each data group d, which allows processing only for the current and
tailoring purposes if d has been collected for no retention. To do a consistency check on a given
policy POLICYA we will use a process CONSISTENCY1 which permits only this behaviour for
all data groups.

TIMELY(d) = collect.d. . .t →

(if t = no retention

then CHAOS(process.d.current, process.d.tailoring)
else CHAOS(process.d) 4 TIMELY(d))

CONSISTENCY1 = |||d • TIMELY(d)
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The consistency check is performed by testing that (note that we need to ignore share events):

CONSISTENCY1 vT POLICYA\{share}

Note that in this form, the process CONSISTENCY1 does not allow for two different collect
events to occur prior to processing/sharing. This is just a convention used for the needs of the
examples in this paper, but the definition can be generalised.

A similar situation in P3P arises with the predefined values for recipients. The values deliv-
ery, other recipient, unrelated and public are all used in cases where the recipient of the data
generally follows different data collection practices than the owner of the website with the policy.
In the descriptions of most predefined purposes for which data may be collected, it is assumed
that a third party will follow the same practices as the website owner. The Recommendation
does not explicitly constrain, for which purposes, sharing with third parties that follow different
practices should be permitted. It is likely, and definitely in line with customer expectations, that
third parties following different data collection practices to the owner of a site should be pre-
vented from obtaining this data with very few exceptions. As a consistency check, it may be
sensible to check that a policy which allows sharing of data with such recipients only does so for
the purpose of contacting a customer (namely, in the case of the predefined constant contact for
the PURPOSE.

It is also sensible to have a check that prevents collection of data for unspecified purposes.
The P3P Recommendation allows a policy to specify a retention value, for a given data group, of
indefinitely, while also permitting an unspecified purpose (in the case of the value other purposes.

These checks can be expressed in our CSP model in an analogous manner to CONSISTENCY1.

5. Refinement Checking

As explained in the Introduction, it is important to be able to compare two given policies
together in order to see if they express the same intention, if they are simply equal, or whether
they permit similar data collection, processing and sharing practices.

We can perform a simple test for trace refinement to see whether the top-level processes de-
scribing two policies refine one another. If we have two policies, P1 and P2, with corresponding
CSP processes POLICY1 and POLICY2, this amounts to checking whether:

POLICY1 vT POLICY2 (1)
POLICY2 vT POLICY1 (2)

where the notation P vT Q denotes trace refinement.
It is worthwhile to remind the reader here of the notion and use of trace refinement as used in

process algebra. A trace is any finite or infinite sequence of steps (actions) that a given process
may take or perform, according to its specification, in a given execution. The set of all traces of
a process P is denoted traces(P). For given processes P and Q we say that P is refined by Q, or
P vT Q, if and only if traces(P) ⊇ traces(Q). Process Q refines process P in the sense that its
possible behaviours are fewer than those of P, so any user or system expecting to work or interact
with process Q will be content with encountering P instead.

If the relations (1) and (2) both hold, then this means that the two P3P policies P1 and P2
are exactly identical, specifying the same statements in effectively the same order. This is not a
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case of much practical interest, and it may be more helpful to compare the individual practices
permitted by P1 with those permitted by P2.

In Section 5.1 we discuss a realistic example (which uses refinement as shown in (1)) in which
two policies are compared as to their overall effect (namely, the totality of practices permitted
by each of the two policies). In Section 5.2 we develop checks which allow to detect differences
between the practices permitted by two policies.

5.1. Detailed Example of a Full Refinement Check

In this section we demonstrate our approach by building a CSP model to compare two real-
istic privacy policies, shown in Figures 3 and 4.

It is evident that both policies refer to three different data groups, #dynamic.http,
#dynamic.clickstream and #dynamic.cookies. Policy C comprises three distinct state-
ments, one for each data group, while Policy D has two statements, with the second statement
applying to both data groups #dynamic.http and #dynamic.cookies. Notice the differences
in retentions between the statements.

Our aim is to show that Policy C is refined by Policy D, or C v D.
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<POLICY xml:lang="en">

<STATEMENT>

<PURPOSE><admin/>

<current/>

<develop/>

</PURPOSE>

<RECIPIENT><ours/></RECIPIENT>

<RETENTION><indefinitely/>

</RETENTION>

<DATA-GROUP>

<DATA ref="#dynamic.clickstream"/>

</DATA-GROUP>

</STATEMENT>

<STATEMENT>

<PURPOSE><admin/>

<current/>

</PURPOSE>

<RECIPIENT><ours/></RECIPIENT>

<RETENTION><legal-requirement/>

</RETENTION>

<DATA-GROUP>

<DATA ref="#dynamic.http"/>

</DATA-GROUP>

</STATEMENT>

<STATEMENT>

<PURPOSE><current/>

<develop/>

</PURPOSE>

<RECIPIENT><ours/></RECIPIENT>

<RETENTION><stated-purpose/>

</RETENTION>

<DATA-GROUP>

<DATA ref="#dynamic.cookies"/>

</DATA-GROUP>

</STATEMENT>

</POLICY>

Figure 3: Policy C

<POLICY xml:lang="en">

<STATEMENT>

<PURPOSE><admin/>

<develop/>

</PURPOSE>

<RECIPIENT><ours/></RECIPIENT>

<RETENTION><stated-purpose/>

</RETENTION>

<DATA-GROUP>

<DATA ref="#dynamic.clickstream"/>

</DATA-GROUP>

</STATEMENT>

<STATEMENT>

<PURPOSE><current/>

</PURPOSE>

<RECIPIENT><ours/></RECIPIENT>

<RETENTION><no_retention/>

</RETENTION>

<DATA-GROUP>

<DATA ref="#dynamic.http"/>

<DATA ref="#dynamic.cookies"/>

</DATA-GROUP>

</STATEMENT>

</POLICY>

Figure 4: Policy D
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The differences between these policies are summarised in Tables 5 and 6.

Statement Data Group Purposes Recipients Retention
1 dynamic clickstream {current,admin,develop} ours indefinitely
2 dynamic http {current, admin} ours legal requirement
3 dynamic cookies {current, develop} ours stated purpose

Figure 5: Comparing policies: Policy C

Statement Data Group Purposes Recipients Retention
1 dynamic clickstream {admin, develop} ours stated purpose

2
dynamic http
dynamic cookies {current} ours no retention

Figure 6: Comparing policies: Policy D

Using our translation tool (as discussed in Section 3), we convert these policies to CSP mod-
els with top-level processes POLICYC and POLICYD. The corresponding CSP code, along with
the check below is available online at http://www.dcs.warwick.ac.uk/~nikos/downloads/
sampleref.csp.

To check refinement, we abstract away from the different purposes and retentions in collect
events, as it is their occurrence that resets the retention counter, independently of the other pa-
rameters. To do this we define a function abs:

abs(P) = P[∀ dg, p, r, t • collect.dg.p.r.t 7→ learn.dg.r]

and the refinement check which shows that C v D is:

abs(POLICYC) vT abs(POLICYD)

This check succeeds in FDR as expected.

5.2. Separate Checks for Collection, Processing and Sharing Practices

If any of the refinement checks mentioned in this section fails, it is an indication of a dif-
ference in particular practices in the policies under comparison. This allows a user to locate
particular differences that may be of interest.

In order to compare data collection practices of P1 and P2 (so as to see, for example, if one
policy requires the collection of the same types data or more types than the other), we define a set
of processes which detect, for all data groups dg, all the collect events for the different allowed
retentions. We define:
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Collections(no retention) = 2 dg : Datagroup • collect.dg.p.r.no retention

→ Collections(no retention)
Collections(stated purpose) = 2 dg : Datagroup • collect.dg.p.r.stated purpose

→ Collections(stated purpose)
...

Collections(indefinitely) = 2 dg : Datagroup • collect.dg.p.r.indefinitely

→ Collections(indefinitely)

By composing POLICY1 with Collections(p), for each of the purposes p, while synchronising
on collection events, we obtain a set of new processes that represent the collection practices
permitted by policy P1. We do similarly for policy P2.

TEST1(t) = POLICY1 |[ {collect.dg.p.r.t} ]|Collections(t)
TEST2(t) = POLICY2 |[ {collect.dg.p.r.t} ]|Collections(t)

We can compare the collection practices of the two policies by checking that, for each t:

TEST1(t) vF TEST2(t)

where the notation P vF P′ denotes failures refinement, i.e. failures(P′) ⊆ failures(P).
Failures refinement is used here in order to compare the sets of actions which these processes

will be unable to perform by definition. If we were to compare traces this would only allow us
to compare the space of all possible behaviours; but to compare the abilities of processes not
to perform certain events (in this case, events representing particular data collection practices)
allows us to contrast them more directly.

We have similar tests for the processing and sharing practices of the two policies. For com-
paring processing practices, we define a set of processes which detect, for all data groups dg, all
the process events for the different allowed purposes:

Purposes(current) = 2 dg : Datagroup • process.dg.current.r.t

→ Purposes(current)
Purposes(admin) = 2 dg : Datagroup • process.dg.admin.r.t

→ Purposes(admin)
...

Purposes(other purposes) = 2 dg : Datagroup • process.dg.other purposes.r.t

→ Purposes(other purposes)

In an analogous fashion to the tests for collection practices, we define:

TEST3(p) = POLICY1 |[ {process.dg.p.r.t} ]|Purposes(p)
TEST4(p) = POLICY2 |[ {process.dg.p.r.t} ]|Purposes(p)
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Comparing the processing practices of the two policies is done by checking that, for each
purpose p,

TEST3(p) vF TEST4(p)

Finally, for comparing sharing practices, we define:

Sharing(ours) = 2 dg : Datagroup • process.dg.p.ours.t → Sharing(ours)
Sharing(same) = 2 dg : Datagroup • process.dg.p.same.t → Sharing(same)

...

Sharing(unrelated) = 2 dg : Datagroup • process.dg.p.unrelated.t → Sharing(unrelated)

We then check refinement between the processes TEST5 and TEST6 for each possible reten-
tion r, where:

TEST5(r) = POLICY1 |[ {share.dg.r} ]| Sharing(r)
TEST6(r) = POLICY2 |[ {share.dg.r} ]| Sharing(r)

The refinement check in this case is TEST5 vF TEST6.

6. Conclusions and Future Work

In this paper we have studied how formal modelling and verification can be applied to the
analysis of privacy policies expressed in P3P. As we have discussed, there are three different
classes of problem that this approach is intended to solve: (a) the need to compare higher-level
policies with lower-level implementations, (b) the need to ensure that any one policy is sensible,
plausible, and consistent relative to some objectively agreed standard (since no formal semantics
were provided, especially in the case of P3P, by its authors), and (c) the situation which arises
when there are two similar, but not exactly equal, policies which need to be compared.

We took note of existing work on the formalisation and analysis of policies, though noted
a lack of work particularly related to privacy. Our approach was influenced by [16] and also
inspired by the ideas in [18]. We presented a novel and practical technique for analysing privacy
policies and capturing the intentions of their authors. Furthermore, we developed a modelling
framework and code generation tool which can be used to reason about actual P3P policies and
which is capable of many further extensions.

In Section 4 we discussed how the CSP model of a P3P policy can be used as a basis to
check for internal semantic consistency. Rather than a syntactic validation (which is a commonly
available feature in any XML parser), we are able to express relationships between different
predefined values in the P3P Recommendation.

In Section 5 we presented refinement checks which may be performed on a pair of policies
(after conversion to CSP using our tool) using the FDR model checker.

Formalising an enterprise’s overall privacy requirements is an arduous and time-consuming
task; however, we are aware that large companies conduct substantial efforts doing just this for
their corporate rulebooks. With such a formalisation at hand, one can check (using the techniques
presented in this paper) that the actual privacy policies being used, e.g. on corporate webpages,
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conform to company rules. In this paper we have focused on refinement checks between pairs
of policies, and on consistency checking, with the expectation that the techniques used apply
equally in the above case.

We believe that this work offers many opportunities for further and related investigations,
including the following.

In order to make use of the policy comparison offered by our method, we plan to analyse and
contrast privacy policies from several commercial websites. The Privacy Finder search engine
is particularly useful in this regard, since we can locate sites offering various degrees of privacy
and extract their P3P source. We are likely to encounter subtleties and special cases which will
improve our CSP model further. We have used the IBM P3P Policy Editor [11] to create the
sample policies for the analyses presented here.

In order to develop further internal consistency checks for P3P policies, it may be beneficial
to combine our techniques with the algorithm described in [14]. This is likely to result in the
development of a comprehensive policy analysis tool, which invokes FDR behind the scenes.

In connection with our work as part of the EnCoRe project [3], we are particularly keen to
investigate the impact of privacy policies on users, and how best to implement user interfaces and
systems that enforce users’ privacy preferences. A user-side privacy agent may need to compare
two websites that a user wishes to view as to their collection, sharing, and processing practices,
so as to show the less privacy-invasive one to the user first; the techniques we have described in
this paper are suited directly to this and related tasks.

We have also developed a logical approach to reasoning about users’ privacy preferences,
namely, about the consent and revocation mechanisms that may be available to them during
online transactions [26].

Acknowledgement. We wish to thank Marco Casassa Mont and Siani Pearson (HP Labs) for
insights into P3P, XACML and policy enforcement in enterprises.
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