Introduction to Lexing and
Parsing Techniques*

Nick Papanikolaou

nikos@dcs.warwick.ac.uk
http://www.warwick.ac.uk/go/nikos

Lecture 2: Syntactic Analysis - Bottom-Up Parsing

1/35

s part of module CS245: Automata and Formal Languages.

Introduction 2/35

Overview

Last lecture we considered various properties of grammars, including the issue of
uniqueness of derivations, self-embedding and ambiguity.

Also, we looked at the limitations of CFGs and the concept of an attribute grammar.

We discussed the process of parsing in general, and we looked at the construction of a
recursive-descent parser for a subset of Pascal types. In particular, we built a
predictive parser, which did not need to backtrack.

3/35

Overview

The techniques we considered all fall under the heading of “top—down parsing”. In this
lecture we will:

m review top—down parsing briefly;
m discuss the advantages and pitfalls of that technique;
m revisit javacc, which generates top—down parsers;

m look at bottom—up parsing.

4 /35

More on Top-Down Parsing 5/35

Review of Top—down Parsing

Top—down parsing tries to construct a parse tree for the leftmost derivation of an
expression. It starts at the root of the parse tree and works downward.

As we saw in the last lecture, top—down parsing consists of two steps:

= At node n (non-terminal A), select one of the productions for A and construct
children for the symbols on the RHS.

m Find the next non-terminal with no children. If lookahead symbol matches
current terminal symbol, proceed to next input character.

6/35

Knuth’s Notation for Parsers

Top—down parsers and the unambiguous grammars they are capable of handling with
k symbols of lookahead are known as LL(k). Similarly, bottom—up parsers are referred
to as LR(k).

The parser we built in the last lecture was LL(1).

LL(k) left-to-right, leftmost derivation
LR(k) left-to-right, rightmost derivation
SLR() “simple LR” — better than LR(0)
LALR(k) “lookahead LR”

The last two represent techniques with improvements to the way in which the parse
table is constructed.

Remember the hierarchy of unambiguous grammars.
7135

Hierarchy of Grammar Classes

Unambiguous Grammars Ambiguous
Grammars

L)
LLa) | LRD

LR(k)

LALR(1)

SLR

8/35

Advantages of LL(1) Parsing
Recursive-descent parsing applies to LL(1) grammars. Its key benefits are:

m The technique is appealing because it seems natural; it is used extensively in
teaching.

m [tis easy to implement and to have confidence in its correctness;
m The functions written can include actions for (mainly type) checking;

m Actions may include synthesis, esp. storage allocation and code generation.

9/35

Disadvantages of LL(1) Parsing
Problems with recursive descent include:
» the inefficiency of recursive function calls;

m the need for grammar transformations (elimination of left recursion and
factorization);

m very large parsers are often produced using this technique;

» the tendency for actions which are part of different phases of compilation to
appear in the same functions in code.

Essential point: the effective use of the recursive descent technique requires a
grammar transformer capable of transforming a grammar to LL(1) form. This is
theoretically impossible for every possible input.

10/ 35
javacc Revisited
javacc is an LL(k) parser generator. In the first lecture, we only used its lexing
features®.
Have a look at:
https://javacc.dev. java.net/ http://www.engr.mun.ca/~theo/JavaCC-FAQ/
Let’s demonstrate javacc by building a recognizer for matching parentheses.

11/35

4In javacc-speak, a lexer is known as a token manager.

https://javacc.dev.java.net/
http://www.engr.mun.ca/~theo/JavaCC-FAQ/

A javacc parser for Matching Parentheses

// javacc-4.0/examples/SimpleExamples/Simple3.jj
// Part 1/3

PARSER_BEGIN(Simple3)
public class Simple3 {

public static void main(String args[])
throws ParseException
{
Simple3 parser = new Simple3(System.in);
parser.Input();
}
}
PARSER_END (Simple3)

12/ 35

A javacc parser for Matching Parentheses

// Part 2/3
SKIP
{
| "\t"
| "\n"
| "\
}
TOKEN :
{
<LBRACE: "{">
| <RBRACE: "}">
}

13 /35

A javacc parser for Matching Parentheses

// Part 3/3
void Input()
{ int count; }
{
count=MatchedBraces() <EQOF>
{ System.out.println("The level of
nesting is " + count); }

int MatchedBraces()
{ int nested_count=0; }

{
<LBRACE> [nested_count=MatchedBraces()] <RBRACE>

{ return ++nested_count; }

3

14 /35

A javacc parser for Matching Parentheses

To compile and run this parser:

$ javacc Simple3.jj
$ javac *.java

$ java Simplel

{x

Lexical error at line 1, column 2.

{3
(ok)

The current directory must be in your CLASSPATH.

Read and work through the README file for the SimpleExamples.

15735

Bottom-Up Parsing 16 / 35

Shift-Reduce Parsing

Bottom-up parsing attempts to construct a parse tree beginning at the leaves and
working towards the root.

We will consider a standard style of bottom—-up parsing known as shift-reduce parsing.
This is used in tools such as yacc.
m The ideais to “reduce” an input string w to the start symbol of the grammar.

m At each reduction step, a substring matching some RHS of a production is replaced
by the symbol on the LHS.

m If the substring is chosen correctly at each step, a rightmost derivation is traced
out in reverse.

171735

Example of Bottom-Up Parse

We want to parse the sentence | abbcde |, belonging to the language generated by a
grammar with productions:

S :=aABe
= Abc
| b
B:=d

abbcde —)‘a de‘—)‘aA e‘—)‘ ‘—>

We have computed, in reverse, the rightmost derivation

S = aABe = aAde = aAbcde = abbcde

18 /35

Handles

The substrings in the last slide are known as handles.

Informally, a handle of a string is a substring that matches the RHS of a production,
and whose reduction to the non-terminal on the LHS represents one step along the
reverse of a rightmost derivation.

Example 1. If
S g* AW = xfw

then A = 3 in the second position is a handle of x3w.

19/35

More on Handles

Definition 1. A right sentential form is one which occurs in some step of a rightmost
derivation. A sentence is a special right sentential form that consists entirely of
terminals.

Definition 2. A handle of a right sentential formy is a production A := 3 and a
position of v where the string 3 may be found and replaced by A to produce the previous
right sentential form in a rightmost derivation of vy.

Bottom—up parsing essentially consists in finding handles repeatedly, starting from the
sentence we're working on and proceeding until the start symbol of the grammar is
reached.

20/ 35

Implementing a Shift-Reduce Parser

A s/R parser has a stack to hold grammar symbols, and an input buffer to hold the
string w to be parsed.

» Initially, the stack is empty and the string w is in the input.

m The parser operates by shifting zero or more input symbols onto the stack until a
handle { is on top of the stack.

m Then the parser reduces {3 to the LHS of the appropriate production.

m This process is repeated until the parser finds an error or the stack contains the
start symbol and the input has been exhausted.

21/35

Implementing a Shift-Reduce Parser

A s/R parser has four different types of actions:

shift the next symbol is shifted onto the stack.

reduce the parser replaces the handle on the stack with a non-terminal.
accept the parser announces successful completion of parsing.

error the parser discovers and reports an error.

22 /35

Example of S/R Parse

Consider the sentence
idl + idz X id3

This sentence belongs to a language whose grammar consists of the productions:

E:=E+E
E:=EXE
E =/ (/ E /)/
E:=id
23 /35
Example of S/R Parse
Stack Input Action
$ idl + idg X id3$ shift
$id, +id, x id3$ | reduce (E :=id)
$E +id, x id3$ | shift
$E+ id, x id3$ | shift
$E+id, xids$ | reduce (E :=id)
$SE+E xid3$ | shift
$E+Ex id;$ | shift
$E+E xids $ | reduce (E :=id)
SE+EXE $ | reduce (E:=E x E)
$E+E $ | reduce (E :==E + E)
$E $ | accept
24 /35

s/R Conflicts

In the example parse, why wasn’t E 4 E reduced to E before shifting x onto the stack?
This is known as a shift/reduce conflict because the parser wouldn’t know whether to
shift or to reduce.

In order to resolve such conflict, we need to specify operator precedence and
associativity information.

Thus, the grammar
Ex=E+E|ExE[(E)|id
is ambiguous because it does not specify the precedence and associativity of + and x.

Parser generators can detect such conflicts and enforce one possibility instead of the
other.

251735

The yacc Parser Generator

Since we studied lex in the first lecture, we ought to consider its companion program
yacc for the sake of completeness.

m yacc is a LALR parser generator and is an abbreviation for “Yet Another
Compiler—-Compiler.”

= The command[yacc spec.y|generates a C programy.tab.c from the
specification spec.y.

m The parser in y.tab.c must be compiled as follows: ‘ gcc y.tab.c -1y|

m Note: for lex output, similarly: | gcc main.c -11}

26 /35

10

A Simple Calculator

// Part 1/2

YAl

#include <ctype.h>

bt

%token DIGIT

Dot

line : expr ’\n’ { printf("%d\n", $1); } ;

expr : expr '+’ term { $$ = $1 + $3; }
| term ;

term : term ’*’ factor { $$
| factor ;

factor : (’ expr ’)’ { $3
| digit ;

$1 x $3;

$2; }
o

27135

A Simple Calculator

// Part 2/2
// The lexer:
yylex() {
int c;
c = getchar();
if (isdigit(c)) {
yylval = c - ’0’;
return DIGIT;
}
return c;
}
// This last part could have been omitted,
// and lex used instead.

The parser generated by yacc from this input file calculates the value of simple
arithmetic expressions.
It resolves the S/R conflict automatically.

28 /35

11

Review 29/ 35

Summary

In this lecture:

= we revised top—down parsing, and LL(1) parsing in particular;

= we considered the pros and cons of LL(1) parsing;

we used javacc to make a parser for matching parentheses;

we learned about bottom-up (LR) parsing;

we implemented a LALR calculator using yacc.

30/35

Putting it all together

In this series of lectures, you learned about lexical and syntactic analysis, the main
phases of any compiler.

You will have the opportunity to revisit this material in course CS§325: Compiler
Design.

By now, you should understand the connection between language and automata
theory, and you know something about the different classes of grammars and how to
implement recognizers for them.

31/35

12

How bad can it get?

INTEGERFUNCTIONA
PARAMETER (A=6,B=2)
IMPLICIT CHARACTER*(A-B) (A-B)
INTEGER FORMAT(10),IF(10),D09E1
100 FORMAT(4H)=(3)
200 FORMAT(4)=(3)
DO9E1=1
DO9E1=1,2
IF(X)=1
10 IF(X)H=1
11 IF (X)300,200
12 300 CONTINUE
13 END
C this is a comment
$ FILE(1)
14 END

O© 0 NO O WN -~

Example due to Dr. EK. Zadeck of IBM Corp.
32/35

Reading

[1] Aho, Sethi, and Ullman, Compilers: Principles, Techniques, and Tools,
Addison-Wesley, 1986.

[2] Tremblay and Sorenson, The Theory and Practice of Compiler Writing,
McGraw-Hill, 1985.

[3] Appel, Modern Compiler Implementation In Java, 2nd ed., Cambridge, 2002.

[4] Hunter, The Essence of Compilers, Prentice—Hall, 1999.

Have a look also at the CS325 notes (www.dcs.warwick.ac.uk/~sk/cs325/index.html).

33/35
The End
[hope you have enjoyed this series of lectures.
Tip: Don’t leave it all to the last minute... Study some of this now, before you
accumulate a backlog! Good luck in the exam.
THE END
34 /35

13

www.dcs.warwick.ac.uk/~sk/cs325/index.html

	Introduction
	Overview
	Overview

	More on Top--Down Parsing
	Review of Top--down Parsing
	Knuth's Notation for Parsers
	Hierarchy of Grammar Classes
	Advantages of LL(1) Parsing
	Disadvantages of LL(1) Parsing
	javacc Revisited
	A javacc parser for Matching Parentheses
	A javacc parser for Matching Parentheses
	A javacc parser for Matching Parentheses
	A javacc parser for Matching Parentheses

	Bottom--Up Parsing
	Shift--Reduce Parsing
	Example of Bottom-Up Parse
	Handles
	More on Handles
	Implementing a Shift--Reduce Parser
	Implementing a Shift--Reduce Parser
	Example of s/r Parse
	Example of s/r Parse
	s/r Conflicts
	The yacc Parser Generator
	A Simple Calculator
	A Simple Calculator

	Review
	Summary
	Putting it all together
	How bad can it get?
	Reading
	Admin
	The End

