
Introduction to Lexing and
Parsing Techniques∗

Nick Papanikolaou

nikos@dcs.warwick.ac.uk

http://www.warwick.ac.uk/go/nikos

Lecture 2: Syntactic Analysis - Top-Down Parsing

1 / 44

a
As part of module CS245: Automata and Formal Languages.

Introduction 2 / 44

Introducing Parsing

As we have seen, parsing is part of the analysis phase of any compiler.

Parsing is the process of discovering the structure of a sentence in a particular
language. In natural language, words change meaning depending on the context;
natural language is thus sensitive to context; but that does not mean natural language
is generated by a context–sensitive grammar!

The syntax of programming languages is expressed using CFGs. As we shall see, CFGs
generate a superset of a programming language’s actual syntax, and constraints must
be imposed on the values of terminals in a CFG.

3 / 44

1

Outline

1. Derivations and Parse Trees

2. Recursion in Grammars

3. Ambiguous Grammars

4. Limitations of CFGs

5. Parsing in General

6. Top–Down Parsing

4 / 44

Derivations and Parse Trees 5 / 44

Review of Grammars and Languages

Remember, a grammar G is a quadruple (T, N, P, s) where:

■ T is an alphabet of terminal symbols;

■ N is an alphabet of non–terminal symbols;

■ P is a set of productions, i.e. pairs (α, β) with α ∈ (T ∪ N)+ and β ∈ (T ∪ N)∗.

■ s is known as the start symbol and s ∈ N.

■ T and N have no symbols in common.

The language generated by G is written L(G) and is a set consisting of all the strings,
sentential forms or sentences that may be formed by applying the productions in G in
all possible ways, starting from the start symbol s.

6 / 44

2

Example

Example 1. The language {xn
y

n | n > 0} is generated by the grammar

G1 = {{x, y}, {S}, P, S}

where P = {S ::= xSy, S ::= xy}

Does G1 generate the string xxxxyyyy ?

To answer the question, we have to try to derive the string from the start symbol using
the productions P. That is, we need to find a derivation S ⇒+ xxxxyyyy.

S ⇒ xSy ⇒ xxSyy ⇒ xxxSyyy ⇒ xxxxyyyy

This derivation is unique.

7 / 44

More on Derivations

In general, derivations are not unique. Regular grammars always have a unique
derivation for a given string because there is never more than one non–terminal on
the right–hand side of a production.

The language {xmyn | m, n > 0} is generated by a grammar G2 with productions:

S ::= XY, X ::= xX, X ::= x, Y ::= yY, Y ::= y

There are several ways of generating the sentence xxxyy from this grammar, including:

S ⇒ XY ⇒ xXY ⇒ xxXY ⇒ xxxY ⇒ xxxyY ⇒ xxxyy (1)

S ⇒ XY ⇒ XyY ⇒ Xyy ⇒ xXyy ⇒ xxXyy ⇒ xxxyy (2)

8 / 44

Leftmost and Rightmost Derivations

■ In (1), the leftmost non–terminal in the sentential form is replaced at each step.
Hence (1) is known as the leftmost derivation of the sentence xxxyy.

■ In (2), the rightmost non–terminal in the sentential form is replaced at each step.
Hence (2) is known as the rightmost derivation of the sentence xxxyy.

■ Other derivations for xxxyy are also possible from grammar G2.

9 / 44

3

Parse Trees

A derivation may be equivalently expressed in 2D, in what is known as a parse tree.
The leftmost derivation

S ⇒ XY ⇒ xXY ⇒ xxXY ⇒ xxxY ⇒ xxxyY ⇒ xxxyy

is equivalent to the parse tree shown below.

S

X

x X

x X

x

Y

y Y

y

10 / 44

Recursion in Grammars 11 / 44

Types of Recursion

The productions in a grammar usually contain recursion, of which there are three
kinds:

A ::= Ab (Left Recursion)

B ::= cB (Right Recursion)

C ::= dCf (Middle Recursion or Self-embedding)

There is a useful recursion-related result which allows us to determine whether a
grammar generates a regular language or a CFL.

Self-embedding Theorem. If a grammar contains no middle recursion then the
language it generates is regular.

Note that, if there is no recursion at all in a grammar, then it is finite and therefore regular.

12 / 44

4

More on Self-embedding

Counterexample 1. The language {xn
y

n | n > 0} is generated by a grammar with
productions S ::= xSy and S ::= xy. Although this is a simple language it is not regular.

This is relevant to compiler design because of the classic bracket–matching problem.
Strings consisting of matching brackets are generated by a grammar with productions:

S ::= ’(’S ’)’

S ::= S S

S ::= ǫ

The grammar is not regular, so you cannot build a lexer to recognize matching
parentheses.

13 / 44

Ambiguous Grammars 14 / 44

Unambiguous Grammars

The following are equivalent statements regarding any grammar G:

■ Each sentence generated by G has a unique leftmost derivation.

■ Each sentence generated by G has a unique rightmost derivation.

■ sentence generated by G has a unique parse tree.

A grammar with the above properties is unambiguous. Other grammars are
ambiguous.

15 / 44

5

An Ambiguous Grammar

Example 2. The grammar for producing sums of xs has productions

S ::= S + S S ::= x

This grammar is ambiguous.

The string x + x + x has two leftmost derivations:

S ⇒ S + S ⇒ x + S ⇒ x + S + S

⇒ x + x + S ⇒ x + x + x

S ⇒ S + S ⇒ S + S + S ⇒ x + S + S

⇒ x + x + S ⇒ x + x + x

These derivations differ in a manner similar to (x · (x + x)) vs. ((x · x) + x).

16 / 44

Removing Ambiguity

The grammar mentioned previously can be made unambiguous by changing the
productions to:

S ::= S + x S ::= x

This conversion is not always possible, and there is no general way of doing this.
Determining whether a grammar is ambiguous is undecidable. Some well–known
ambiguous grammars:

■ grammars with one or more productions containing left and right recursion;

■ the ’dangling else’ grammar for imperative programming languages.

17 / 44

6

The ‘Dangling else’
〈stmt〉 ::= if 〈expr〉 then 〈stmt〉 else 〈stmt〉

| if 〈expr〉 then 〈stmt〉

| 〈other〉

Consider how to parse nested if statements e.g.

if 〈expr〉 then if 〈expr〉 then 〈other〉 else 〈other〉

To which of the ifs does the else belong to? Fix:

〈stmt〉 ::= 〈matched〉 | 〈unmatched〉

〈matched〉 ::= if 〈expr〉 then 〈matched〉 else 〈matched〉

| 〈other〉

〈unmatched〉 ::= if 〈expr〉 then 〈stmt〉

| if 〈expr〉 then 〈matched〉 else 〈unmatched〉

18 / 44

Limitations of CFGs 19 / 44

A Context Sensitive Grammar

There are simple languages which are not context–free. Here is one:

{am | m is a positive power of 2}

This language is generated by the grammar G3 = {{a}, {S, N, Q, R}, P, S} with
productions:

S ::= QNQ QN ::= QR

RN ::= NNR RQ ::= NNQ

N ::= a Q ::= ǫ

When the left–hand side of productions in a grammar contains a sequence of
nonterminals, the grammar is context–sensitive.

20 / 44

7

Are CFGs good enough?

We are only studying CFGs. Can CFGs generate the types of features commonly found
in programming languages? CFGs are mostly adequate. Consider these problems in
Pascal:

■ type errors:

var x: integer; begin x:=’c’; ...

■ procedure arguments

procedure p(i,j: integer); ...

p(3,4,5,6);

■ array indexing

var A[1..10] of integer; ... A[2,3]:=0;

21 / 44

Are CFGs good enough? p.2

It is not possible to write a CFG that generates all legal Pascal programs but none with
these types of faults.

A type–0 grammar to do this can be devised but it would be non–intuitive and
non–transparent, and it would require a Turing machine for a recognizer. Viz.
grammar G3.

Despite these limitations, CFGs are used in practice. A CFG generates a superset of a
programming language; that’s why we actually supplement a CFG with actions, which
a parser performs to address errors such as those mentioned.

A CFG with actions is known as an attribute grammar.

22 / 44

8

The Parsing Problem 23 / 44

Introducing Parsing

Parsing is the process of determining if a given string of tokens can be generated by a
particular grammar. During this process, a parse tree is constructed.

A parser can be constructed for any grammar, but in practice the grammars that are
used take a special form.

■ for any CFG there is a parser that takes at most O(n3) time to parse a string of n

tokens.

■ linear algorithms suffice, however, to parse essentially all grammars that arise in
practice.

■ the most common type of programming language parser makes a single
left-to-right scan of the input, looking ahead one token at a time. This is known as
an LL(1) parser.

24 / 44

Parsing Methods

Two key classes of methods, differing in the way in which they build the parse tree:

top–down start at the root of the tree and proceed toward the leaves;

bottom–up start at the leaves and work upward to the root.

Thus, a top–down parser seeks the leftmost derivation for a sentence, and a
bottom–up parser seeks the rightmost derivation.

The top–down method allows one to build efficient parsers manually.

The bottom–up method is less intuitive, but it handles a larger class of grammars and
enjoys wide tool support.

25 / 44

9

Top–Down Parsing in General 26 / 44

The Top–Down Technique

The basic algorithm for the top–down parsing technique is as follows:

Start at the root of the parse tree, labelled with the start symbol S and repeat the
following:

1. At node n, labelled with non–terminal A, select one of the productions for A and
construct children at n for the symbols on the right–hand side of the production.

2. Find the next node at which a subtree is to be constructed.

The current token being scanned in the input is known as the lookahead symbol —
initially it is the first token in the input string.

27 / 44

Detailed Example

Here is a grammar for a subset of Pascal types:

〈type〉 ::= 〈simple〉

| "↑" "id"

| "array" "[" 〈simple〉 "]" "of"〈type〉

〈simple〉 ::= "integer"

| "char"

| "num" ".." "num"

Thus, the type of an integer array is:

array [integer] of integer

We do not distinguish here between
array[5] of integer and array[10] of integer.

28 / 44

10

Detailed Example

Here is a Pascal type:
array [num..num] of integer

We are going to parse this expression top–down.

1. Initially the lookahead symbol is the token "array". The root of the parse tree is
set to the start symbol 〈type〉.

2. We find the (only) production which starts with "array" and build nodes for its
right–hand side, namely for the tokens "array", "[", 〈simple〉, "]", "of", and
〈type〉.

29 / 44

The Parse Tree

〈type〉

"array" "[" 〈simple〉 "]" "of" 〈type〉

30 / 44

Detailed Example

3. We select the leftmost child as the next node to consider. It matches the
lookahead symbol and it is a terminal, so we advance to the next token in both
the tree and the input.

4. The next child is "[" and the lookahead symbol becomes "[". As before, we
advance to the next token in both tree and input.

5. We reach the node for 〈simple〉 and we try each production until we match the
lookahead symbol, which is "num". So we apply the production
〈simple〉 ::= "num" ".." "num" and generate three children for this node.

31 / 44

11

The Parse Tree

〈type〉

"array" "[" 〈simple〉

"num" ".." "num"

"]" "of" 〈type〉

32 / 44

The Final Parse Tree

The procedure stops when all children are terminals. This is the final parse tree.

〈type〉

"array" "[" 〈simple〉

"num" ".." "num"

"]" "of" 〈type〉

〈simple〉

integer

33 / 44

12

Predictive Parsing 34 / 44

A Predictive Parser

Backtracking is not always necessary; there is a technique in which it does not occur.
Predictive parsing is a special case of what is known as recursive–descent parsing,
which involves calling certain procedures recursively to process the input.

We will now program a predictive parser for the grammar of Pascal types.

// Part 1/3:

procedure match(t: token)

begin

if (lookahead = t) then

lookahead := next_token();

else error;

end;

35 / 44

A Predictive Parser

// Part 2/3:

procedure type();

begin

if lookahead is in {"integer","char","num"}

then simple();

else if lookahead="^" then

begin match("^"); match("id"); end

else if lookahead="array" then begin

match("array"); match("["); simple();

match("]"); match("of"); type();

end

else error();

end;

36 / 44

13

A Predictive Parser

// Part 3/3:

procedure simple();

begin

if lookahead="integer" then

match("integer");

else if lookahead="char" then

match("char");

else if lookahead="num" then begin

match("num"); match(".."); match("num");

end

else error();

end;

37 / 44

Using the Predictive Parser

■ To launch the predictive parser, we call the procedure type() for the start symbol
〈type〉. Initially the lookahead variable is set to "array", which is the first token in
the input.

■ The match(t) procedure moves by one token in the input whenever the lookahead
symbol matches the current node in the parse tree.

■ Predictive parsing relies on information about what first symbols appear on the
right–hand side of a production. For this grammar, there is exactly one possibility
at each point during the parse.

38 / 44

14

The FIRST Set

Formally, a predictive parser uses what is known as the FIRST set or starter set.

■ For a right–hand side α of a production A ::= α, we define FIRST(α) as the set of
tokens that appear as the first symbols of one or more strings generated from α.

■ If α = ǫ or α can generate ǫ, then ǫ also belongs to FIRST(α).

FIRST(〈simple〉) = {"integer", "char", "num"}

FIRST("↑" "id") = {"↑"}

FIRST("array" "[" 〈simple〉 "]" "of" 〈type〉) =

= {"array"}

39 / 44

The FIRST Set

If there are two productions such that A ::= α and A ::= β, then we have to consult the
FIRST sets of α and β to decide what to do.

■ if the lookahead symbol is in FIRST(α), then α is used.

■ if the lookahead symbol is in FIRST(β), then β is used.

Recursive–descent parsing requires

FIRST(α) ∩ FIRST(β) = ∅

40 / 44

How to Write a Predictive Parser in General

A predictive parser consists of a procedure for every non–terminal in a grammar. Each
procedure does the following two things:

1. It decides which production to use by looking at the lookahead symbol.

If the lookahead symbol is in FIRST(α) for some production A ::= α then that
production is used; if there is a conflict between two right–hand sides, the method
fails. If the lookahead symbol does not belong to any FIRST set, then a production
with ǫ is used.

2. The procedure “uses” a production, or applies it, by “mimicking” the right–hand
side in terms of code i.e. by calling the match(t) function as many times as
necessary.

41 / 44

15

Some Remarks

A recursive–descent parser will loop forever on a left–recursive grammar! Luckily, left
recursion can be eliminated using a well-documented algorithm.

Our predictive parser used one lookahead symbol to decide which production to
apply. It is an LL(1) parser, since it reads the input from Left to right and seeks the
Leftmost derivation.

The parsing algorithm we used only applies to a limited group of grammars, known
unsurprisingly as LL(1) grammars. This is the most common type of grammar, but
there are many other classes of grammars for which parsing algorithms are known.

42 / 44

Hierarchy of Grammar Classes

43 / 44

16

Summary

■ We have studied grammars in detail, looking at parse trees, recursion and
ambiguity.

■ We considered whether CFGs are adequate for specifying programming language
syntax.

■ We looked at the top–down parsing process in detail and implemented a
predictive LL(1) parser.

Next and final lecture: Bottom–up parsing

44 / 44

17

	Introduction
	Introducing Parsing
	Outline

	Derivations and Parse Trees
	Review of Grammars and Languages
	Example
	More on Derivations
	Leftmost and Rightmost Derivations
	Parse Trees

	Recursion in Grammars
	Types of Recursion
	More on Self-embedding

	Ambiguous Grammars
	Unambiguous Grammars
	An Ambiguous Grammar
	Removing Ambiguity
	The `Dangling else'

	Limitations of CFGs
	A Context Sensitive Grammar
	Are CFGs good enough?
	Are CFGs good enough? p.2

	The Parsing Problem
	Introducing Parsing
	Parsing Methods

	Top--Down Parsing in General
	The Top--Down Technique
	Detailed Example
	Detailed Example
	The Parse Tree
	Detailed Example
	The Parse Tree
	The Final Parse Tree

	Predictive Parsing
	A Predictive Parser
	A Predictive Parser
	A Predictive Parser
	Using the Predictive Parser
	The FIRST Set
	The FIRST Set
	How to Write a Predictive Parser in General
	Some Remarks
	Hierarchy of Grammar Classes
	Summary

