Introduction	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion	References

An Automated Analysis of Quantum Key Distribution

R. Nagarajan¹ N. Papanikolaou¹ G. Bowen² S. Gay³

¹Department of Computer Science University of Warwick

²Centre for Quantum Computation University of Cambridge

³Department of Computing Science University of Glasgow

3rd Int'l Workshop on Security Issues in Concurrency

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Introduction	Quantum Key Distribution (QKD)	Model Checking	Discussion	References o

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Outline

Introduction

- Quantum Information Processing
- Motivation
- Background
- Quantum Key Distribution (QKD)
 - The BB84 Protocol
 - The Security of QKD
- 3 Model Checking
 - 4 Analysis of BB84 Using PRISM
- 5 Discussion
 - Limitations
 - Current and Future Work
 - Summary and Conclusion

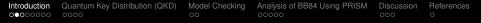
Introduction	Quantum Key Distribution (QKD)	Model Checking	Discussion	References o

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Outline

Introduction

- Quantum Information Processing
- Motivation
- Background
- 2 Quantum Key Distribution (QKD)
 - The BB84 Protocol
 - The Security of QKD
- 3 Model Checking
- 4 Analysis of BB84 Using PRISM
- 5 Discussion
 - Limitations
 - Current and Future Work
 - Summary and Conclusion



Quantum Information Processing

 Quantum Information Processing (QIP) is the discipline dealing with the storage, manipulation and transmission of information using quantum phenomena.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

- QIP is divided into two interrelated areas:
 - Quantum Computation
 - Quantum Information Theory
- QIP has important applications in cryptology.

Quantum Information Processing (2)

- There exist efficient quantum algorithms, with no classical analogue, for solving difficult computational problems.
 - prime factoring and discrete logarithm (Peter Shor)
 - unstructured database search (Lov Grover)
- The implementation of quantum algorithms requires large–scale **quantum computers**.
- Quantum computers will clearly threaten the security of popular current-day cryptosystems (e.g. RSA, ElGamal).

くしゃ 人口 マイビッ イビッ しょうく

Quantum Information Processing (3)

- There are several known quantum techniques for usual cryptographic tasks, including oblivious transfer, bit commitment and key distribution.
- We will focus on quantum key distribution (QKD) here.
- Strong known security result:
 - QKD is unconditionally secure against all attacks permitted by quantum mechanics (Mayers, 1996).

(日) (日) (日) (日) (日) (日) (日)

Unconditionally secure quantum bit commitment is impossible (Mayers, 1997).

Introduction	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion	References o
Motiv	ation				

- Practical systems for QKD are already available commercially (viz. www.magiqtech.com, www.idquantique.com).
- The unconditional security proof of QKD holds for an ideal implementation and relies on complex information-theoretic arguments.
- We are in favour of a more practical approach, which is at a closer level to implementation: probabilistic model-checking.

(日)

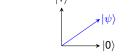
• We will demonstrate this approach with an elementary analysis of the BB84 protocol for QKD.

 Key distribution is the process of establishing a common secret

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

known as the **key**, between two users ("Alice" and "Bob").

 Unconditionally secure key distribution in a classical (i.e. non-quantum) setting is impossible; classical key distribution is, at best, computationally secure.


- The state of a 2–level quantum system, such as a polarised photon or a spin-¹/₂ particle, corresponds to a quantum bit or **qubit**.
- A qubit is a vector $|\psi\rangle$ in a 2–D complex vector space \mathcal{H}_2 .
- The unit length, orthogonal vectors |0> and |1> form a basis of H₂.
- The general state of a qubit is a linear combination

$$|\psi\rangle = \alpha \cdot |\mathbf{0}\rangle + \beta \cdot |\mathbf{1}\rangle, \qquad \alpha, \beta \in \mathbb{C}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

- Measurements are made with respect to a given basis.
- If the qubit state $|\psi\rangle = \alpha \cdot |0\rangle + \beta \cdot |1\rangle$, is measured w.r.t $\boxplus = \{|0\rangle, |1\rangle\}$, then the state collapses into:
 - either $|0\rangle$, with probability $||\alpha||^2$,
 - or $|1\rangle$, with probability $||\beta||^2$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Quantum measurement is probabilistic and destructive.

 Consider the so–called Hadamard basis, which is a rotation of the computational basis by 90°. It is written ⊠ = {|+⟩, |−⟩} where:

$$|+\rangle = \frac{1}{\sqrt{2}} (|0\rangle + |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

$$|-\rangle = \frac{1}{\sqrt{2}} (|0\rangle - |1\rangle)$$

• Measuring a qubit in state $|\psi\rangle = \alpha \cdot |0\rangle + \beta \cdot |1\rangle$ w.r.t. $\{|+\rangle, |-\rangle\}$ will collapse its state into:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- either $|+\rangle$, with probability $||\frac{\alpha+\beta}{\sqrt{2}}||^2$,
- or $|-\rangle$, with probability $||\frac{\alpha-\beta}{\sqrt{2}}||^2$.

Introduction	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion	References o
Outlin	е				

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

- Introduction
 - Quantum Information Processing
 - Motivation
 - Background
- Quantum Key Distribution (QKD)
 - The BB84 Protocol
 - The Security of QKD
- 3 Model Checking
- 4 Analysis of BB84 Using PRISM
- 5 Discussion
 - Limitations
 - Current and Future Work
 - Summary and Conclusion

Introduction Quantum Key Distribution (QKD) Model Checking Analysis of BB84 Using PRISM Discussion References

Quantum Key Distribution (QKD)

• The security of QKD relies on the probabilistic and destructive nature of quantum measurement, as well as the **no–cloning theorem** for quantum states.

(日) (日) (日) (日) (日) (日) (日)

- Several protocols have been proposed for QKD:
 - BB84 (Bennett and Brassard, 1984)
 - B92 (Bennett, 1992)
 - E91 (Ekert, 1991)

Introduction	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion	References
	0000				

BB84 With No Eavesdropping

- In \boxplus -basis, "0" is represented by $|0\rangle$ and "1" by $|1\rangle$.
- In \boxtimes -basis, "0" is represented by $|+\rangle$ and "1" by $|-\rangle$.
- Phase 1. Alice \longrightarrow Bob.

1.	Alice picks a random bit sequence.	0	1	0	1	0	1	0
2.	Alice picks an encoding basis.	H	Ħ	\square	\square	\boxtimes	\boxtimes	Ħ
За.	Alice prepares and sends qubits.	$ 0\rangle$	 1 >	$ +\rangle$	$ 1\rangle$	$ +\rangle$	$ -\rangle$	$ 0\rangle$

• Phase 2. Bob.

3b.	Bob receives qubits.	0 angle	$ 1\rangle$	$ +\rangle$	$ 1\rangle$	$ +\rangle$	$ -\rangle$	$ 0\rangle$
4.	Bob picks a decoding basis.	\square	Ħ	Ħ	\boxtimes	\square	Ħ	
5.	Bob measures with dec. basis.	0 or 1	1	0 or 1	0 or 1	0	0 or 1	0

 Phase 3. Alice and Bob compare bases and discard errors. Result = 100

Introduction	Quantum Key Distribution (QKD) ○●○○	Model Checking	Analysis of BB84 Using PRISM	Discussion	References o
BB84	with Favesdro	nning			

- Typical woman-in-the-middle attack.
- Eve intercepts and measures qubits. She places the results of her measurements back onto the channel.
- Passive eavesdropping impossible (no-cloning!).

	Original bit sequence:	0	1	0	1	0	1	0
	Alice's encoding bases:	Ħ	⊞		Ħ	\boxtimes	\boxtimes	Ħ
3b.	Eve intercepts qubits.	$ 0\rangle$	$ 1\rangle$	$ +\rangle$	$ 1\rangle$	$ +\rangle$	$ -\rangle$	0 angle
4.	Eve picks a decoding basis.	Ħ	Ħ	Ħ	Ħ	Ħ	Ħ	\boxtimes
5.	Eve measures with basis.	0	1	0 or 1	1	0 or 1	0 or 1	0 or 1
6.	Bob picks a decoding basis.	\square	Ħ	Ħ			Ħ	⊞
7.	Bob measures with basis.	0 or 1	1	0 or 1	0 or 1	0 or 1	0 or 1	0 or 1
								\uparrow
							detected	

Introduction	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion	References o
Attack	king BB84				

- What about impersonation?
 - Unconditionally secure user authentication is possible classically using hash functions (Wegman–Carter, 1979).
- What if Eve has a quantum memory?
 - No cloning theorem: She has to create **substitute states** to send to Bob, or she will be easily detected.

(日) (日) (日) (日) (日) (日) (日)

- What if there is **noise** on the channel?
 - the **upper bound** on errors induced by the channel is exceeded when an eavesdropper is present.
- What happens when an eavesdropper is detected?
 - A secret key can be established, using privacy amplification (which can be done classically).
- Two attacks of interest:
 - Intercept–Resend attack
 - Random Substitute attack

Introduction	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion	References
	0000				

The Security Proof of BB84

- BB84 is unconditionally secure if, after the basic protocol is complete:
 - Error correction is performed to reconcile Alice and Bob's binary sequences.
 - **Privacy amplification** is performed to extract a secret subset of the reconciled key.
- If the above hold, **BB84 guarantees the eventual** establishment of a common secret key, in the presence of an eavesdropper.
- This is true **even if there is noise** on the quantum channel.
- The security proof determines a **lower bound** on the number of qubits which must be transmitted to guarantee a final key of given length.

Introduction	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion	References

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Outline

- Introduction
 - Quantum Information Processing
 - Motivation
 - Background
- 2 Quantum Key Distribution (QKD)
 - The BB84 Protocol
 - The Security of QKD
- 3 Model Checking
 - Analysis of BB84 Using PRISM
- 5 Discussion
 - Limitations
 - Current and Future Work
 - Summary and Conclusion

- Model checking is a method of automated verification.
- It consists in mechanically proving that a model, σ, expressed in a suitable modelling language, satisfies a temporal logic formula φ. For given σ and φ, a model checker whether

$\sigma \models \phi$

- Classical **security protocols** are frequently verified using model checking.
 - Gavin Lowe used a model checker to detect a subtle security flaw in the Needham Schroeder public key protocol.

(日) (日) (日) (日) (日) (日) (日)

Probabilistic Model Checking

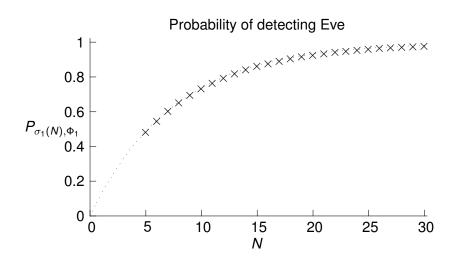
- A **probabilistic model checker** is designed to allow the verification of concurrent systems with probabilistic behaviour.
 - PRISM (Kwiatkowska et al., 2001)
 - ProbVerus (Clarke et al., 1999)
 - ProbUSM (Baier et al., 2005)
- For a given model σ and temporal formula φ, PRISM computes Pr(σ ⊨ φ).
- We have used PRISM to create a model of the basic BB84 protocol. With PRISM we have computed:
 - the probability *P*_{det} of detecting an eavesdropper when *N* qubits are transmitted; and
 - the probability P_{>1/2} that the eavesdropper obtains more than half the originally transmitted bit values by measurement.

Introduction	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion	References o
Outlin	Ie				
	Introduction Quantum Information Motivation Background 	ation Proce	ssing		

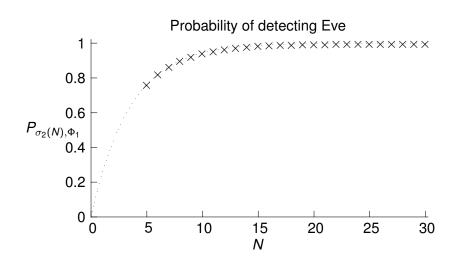
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- 2 Quantum Key Distribution (QKD)
 - The BB84 Protocol
 - The Security of QKD
- 3 Model Checking
- 4 Analysis of BB84 Using PRISM
- 5 Discussion
 - Limitations
 - Current and Future Work
 - Summary and Conclusion

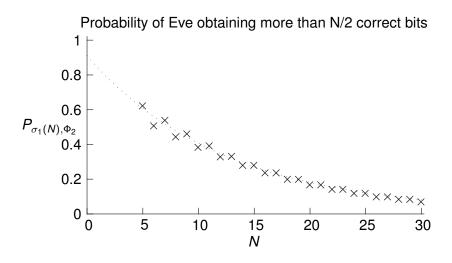
Introduction Q	uantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion	References
	000		00000		


PRISM Models of BB84

- PRISM models can contain parameters. Models can be automatically verified for different values of these parameters.
- We have **two PRISM models of BB84**, one for each type of eavesdropping.
- Both models have a single parameter, the number *N* of qubits transmitted by Alice to Bob over the quantum channel.
- We have computed the probabilities P_{det} and $P_{>1/2}$ for N ranging from 5 to 30.


Legend for Graphs

The crosses indicate data points produced by PRISM, while the dotted curve is a nonlinear least squares fit* to these points.



- As the number of transmitted qubits in a trial of BB84 is increased, the probability of detecting the eavesdropper asymptotically tends to 1.
- As the number of transmitted qubits in a trial of BB84 is increased, the chance that an eavesdropper obtains more than half the correct key values asymptotically tends to 0.
- The eavesdropper is detected much sooner when a random substitute attack is performed.

(日) (日) (日) (日) (日) (日) (日)

• These results are in agreement with the theoretical predictions.

Introduction	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion	References o
Outlin	е				

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

- Introduction
 - Quantum Information Processing
 - Motivation
 - Background
- Quantum Key Distribution (QKD)
 - The BB84 Protocol
 - The Security of QKD
- 3 Model Checking
 - Analysis of BB84 Using PRISM
- 5 Discussion
 - Limitations
 - Current and Future Work
 - Summary and Conclusion

Introduction 00000000	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion ●○○	References o
Limita	ations				

- Only finite systems can be modelled in PRISM.
 - Protocols can only be verified for finite values of their security parameters.
- PRISM input language is too low-level.
 - Difficult to construct a useful **representation** of data, and difficult to model **protocol primitives**.
- PRISM struggles with large system models.
- PRISM is still under development.
- In general, quantum phenomena cannot be simulated efficiently on classical computers.
 - But there exists a class of quantum operations (those typically arising in quantum protocols) which can be simulated efficiently.

00000000	0000	00	00000	000	
	Quantum Key Distribution (QKD)				

Current and Future Work

- Our programme is **to develop a general, high–level framework** for modelling and analysing quantum protocols using model checking.
- We are developing a **code generation tool**, PRISMGEN, which generates finite models for this purpose.
- We aim to combine our formal verification framework with a high–level specification language, in particular **CQP** (Gay and Nagarajan, 2005).

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

Introduction	Quantum Key Distribution (QKD)	Model Checking		References o

Summary and Conclusion

- We have presented the BB84 protocol for QKD.
- We have considered briefly the security of QKD.
- We have conducted a **proof–of–concept analysis** of the basic BB84 protocol using probabilistic model checking.
- We have discussed the **limitations** of the approach and **directions for future work**.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○○

There is much to be done!

	Quantum Key Distribution (QKD)	Model Checking	Analysis of BB84 Using PRISM	Discussion 000	References ●
For F	urther Reading				

PAPANIKOLAOU, N.

Techniques for design and validation of quantum protocols. Master's thesis, Department of Computer Science, University of Warwick, 2005.

- GAY, S., NAGARAJAN, R., AND PAPANIKOLAOU, N. Probabilistic model-checking of quantum protocols. Quantum Physics Repository Preprint quant-ph/0504007, available at www.arxiv.org.
- GAY, S. AND NAGARAJAN, R. Communicating quantum processes.

In POPL '05: Proceedings of the 32nd ACM Symposium on Principles of Programming Languages, Long Beach, California, January 2005.