Model–Checking Quantum Key Distribution: Techniques and Results

Nick Papanikolaou¹

Joint work with Simon Gay² and Rajagopal Nagarajan¹

¹Department of Computer Science University of Warwick

²Department of Computing Science University of Glasgow

FOCS / Q-Day II, 8/12/05

N. Papanikolaou (Warwick)

Model-Checking QKD

FOCS / Q-Day II, 8/12/05 1 / 13

イロト イロト イヨト イヨト 二日

Outline

Introduction Motivation Background

Probabilistic Model Checking

Analysis of BB84 Using PRISM

PRISM Models of BB84 Probability of Detecting an Eavesdropper Probability of Eavesdropper obtaining over half bits

Developing a General Framework

Review

San

Motivation

- Practical systems for QKD are already available commercially (viz. www.magiqtech.com, www.idquantique.com).
- The unconditional security proof of QKD does not take into account implementation–level details; it relies only on information–theoretic arguments.
- We are in favour of a more practical approach, which is at a closer level to implementation: probabilistic model-checking.
- We will demonstrate this approach with an elementary analysis of the BB84 protocol for QKD.
- We have already extended the approach to other protocols.

Sac

Quantum Key Distribution

- ▶ Key distribution is the process of establishing a common secret $k \in \{0, 1\}^N$ known as the key, between two users (Alice and Bob).
- Classical key distribution is, at best, computationally secure.
- QKD is unconditionally secure against all attacks permitted by quantum mechanics (Mayers, 1996).
- Several protocols have been proposed for QKD:
 - BB84 (Bennett and Brassard, 1984)
 - B92 (Bennett, 1992)
 - E91 (Ekert, 1991)

Sac

The BB84 Protocol

- 1. Alice generates a random stream of qubits in the basis states of either the **standard basis** or the **Hadamard basis**. She sends all the qubits to Bob.
- 2. Bob chooses one of two observables M_s , M_h and measures each qubit received. He stores the outcomes.
- 3. Alice and Bob compare their choices of bases and observables. All mismatches are discarded.
- To model this protocol, we store only 1 qubit at a time and repeat the process.
- The state space for this protocol is the set

$$\mathcal{S} = \left\{ |0
angle, |1
angle, rac{1}{\sqrt{2}} \left(|0
angle + |1
angle
ight), rac{1}{\sqrt{2}} \left(|0
angle - |1
angle
ight)
ight\}$$

where S is closed under the H unary operator and the two measurement observables M_s and M_h .

N. Papanikolaou (Warwick)

Probabilistic Model Checking

- A probabilistic model checker is designed to allow the verification of concurrent systems with probabilistic behaviour.
 - PRISM (Kwiatkowska et al., 2001)
 - ProbVerus (Clarke et al., 1999)
 - ProbUSM (Baier et al., 2005)
- A PRISM model consists of agents performing named actions with specified probabilities.
- A PRISM property is an expression in Probabilistic Computation Tree Logic (PCTL).
- ► For a given model σ and temporal formula ϕ , PRISM computes $Pr(\sigma \models \phi)$.

Sac

PRISM Models of BB84

- We have used PRISM to create a model of the basic BB84 protocol. With PRISM we have computed:
 - the probability P_{det} of detecting an eavesdropper when N qubits are transmitted; and
 - the probability P_{>1/2} that the eavesdropper obtains more than half the originally transmitted bit values by measurement.
- ► The model has a single parameter, the number *N* of qubits transmitted by Alice to Bob over the quantum channel.
- We have computed the probabilities P_{det} and $P_{>1/2}$ for N ranging from 5 to 30.

◆□▶ ◆□▶ ◆豆▶ ◆豆▶ → 豆 − つへつ

Intercept–Resend Eavesdropping: P_{det}

Intercept–Resend Eavesdropping: $P_{>1/2}$

Developing a General Framework

- Our programme is to develop a general, high-level framework for modelling and analysing quantum protocols using model checking.
- We are developing a code generation tool, PRISMGEN, which generates finite models for this purpose.
- We aim to combine our formal verification framework with a high-level specification language, in particular CQP (Gay and Nagarajan, 2005).
 - Problem is to build models for M-qubit systems, whose state spaces grow exponentially with M.
 - By using code generation, we can abstract away from PRISM's low-level language and provide high-level protocol primitives.

San

10/13

Generating Models of State Spaces for Protocols

- ► The BB84 model only stores 1 qubit at a time.
- General technique: to identify the finite set/group of quantum states which are closed under the specific set of operations used in a quantum protocol.
- In quant-ph/0504007 we show how this idea is applied to simple examples: superdense coding, quantum teleportation, and a simple quantum error correction circuit.
- PRISMGEN: tool for generating a PRISM agent ("module") representing an *M*-qubit system and the effect of basic operations *H*, *CNot*, σ_X, σ_Y, σ_Z.
- ► We have had success to date for M = 2 and M = 3 qubits adequate for simple examples.

11/13

Review

- ► We have presented a basic analysis of the **BB84** protocol.
- ► We have discussed the use of the **PRISM** in this context.
- We have considered the problem of generating state spaces for quantum protocols.
- We have **not** presented the precise nature of the models here.
- We have **not** discussed the algorithm for generating a unique state space.
- We have not considered the inherent limitations of the approach.

Ja C

For Further Reading

- NAGARAJAN, PAPANIKOLAOU, BOWEN, AND GAY An Automated Analysis of the Security of Quantum Key Distribution. In Proceedings of SECCO'05, San Francisco, August 2005.
- GAY, S., NAGARAJAN, R., AND PAPANIKOLAOU, N. Probabilistic Model–Checking of Quantum Protocols. Preprint quant-ph/0504007, available at www.arxiv.org.
 - GAY, S. AND NAGARAJAN, R. Communicating Quantum Processes. In POPL '05: Proceedings of the 32nd ACM Symposium on Principles of Programming Languages, Long Beach, California, January 2005.