
Pattern Detection and Extraction
from Systems and Security Simulation Models

Towards a Model-Checking Framework
for Security Analytics

Brian Monahan and Nick Papanikolaou
Cloud and Security Lab, HP Labs

{brian.monahan,nick.papanikolaou}@hp.com

April 19, 2012

Abstract

In this paper we describe a method, and implemented prototype, for ex-
tracting high–level process models for systems modelled using a simulation
framework (for illustration we use the Gnosis language and toolset). Our
technique builds a finite state automaton that characterises one or more sim-
ulation runs of a simulation model by including in its states selected parts
of the latter’s execution traces. The intention is that the generated automa-
ton reveals the high–level structure of the original model, without making
reference to (or requiring knowledge of) the source code of that model. We
discuss applications for this technique and identify several directions for fur-
ther work.

1 Introduction

One of the greatest challenges in modern computing is that of understanding and
reasoning about complex system behaviour. Simulation is one of the most widely
used approaches for dealing with this challenge, and numerous different simula-
tion techniques and tools have been developed for a wide range of domains. The
effectiveness of any given simulation depends on the accuracy and amount of de-
tail contained in the model used to produce that simulation; therefore, a great deal
of skill and experience is required to develop simulations which actually provide
meaningful information and insight into the possible behaviours of a system. Our
focus here is not on the development of such models, but rather on the information
that can be gleaned about system behaviour from the results of several simulations,
even when there is very little (or even no) knowledge of the original model used to
produce them.



We argue that one can extract meaningful finite-state models from the results of
simulations, which can reveal patterns and structure that is not necessarily obvious
in the original model used for these simulations. This claim is of fundamental im-
portance, as it means that simulations may reveal more information about a system
than one might think; furthermore, the techniques we present here can be gener-
alised so as to apply to any other experimental setup in which system behaviour
is contained in ordered logs or timelines, and in which it is desirable to detect
common patterns and underlying structure.

The types of simulations for which the techniques we present in this report find
greatest utility are those where there is inherent non-deterministic behaviour, and
also explicit specification of the probabilities of particular actions/events occurring.
It is these types of simulations which give several different, and hence interesting,
results (specifically, they give rise to different traces; this term is defined below).
In order to account for the probabilities of different action patterns in simulations,
our technique for extracting such patterns assigns explicit probabilities to actions
and events.

In order to fully understand every aspect of a given system model, one could
program a tool to systematically and exhaustively generate all possible behaviours
described by the model, and then perform checks of correctness and other prop-
erties on each and every such behaviour; this type of verification is known in the
literature as explicit-state model checking. We envisage incorporating the tech-
niques we describe in this report in such a tool in the future, but for our present
purposes we focus on extracting patterns and structure from a finite (but not neces-
sarily exhaustive) set of behaviours.

1.1 Terms Used In This Report

The observation of multiple simulation runs will yield different (pseudorandom,
to be precise) results when the model used contains explicit (or implied) non-
determinism or probabilities for particular actions. In this report we will use the
term run (or simulation run) to refer to a single execution of a simulation. The out-
put of a run is a trace, namely, an ordered sequence of states. A state in this context
is defined as a snapshot of the values of all the variables in the system model at a
specified time instant during a simulation, along with any printed messages pro-
duced at that time.

1.2 Tool Support for Simulations In This Report

To demonstrate our extraction algorithm we will make use of the Gnosis toolset1 [6,
7], a modelling and simulation framework based on Demos2k. While the details of
the Gnosis syntax are not of great importance for this paper, it is worth mentioning
some tool specifics as they will be useful later.

1For more information, see http://www.hpl.hp.com/research/systems_security/

gnosis.html.

2



When a system model named model.gn is input to the Gnosis tool, Gnosis
will perform a single simulation run and print out the trace on the standard output
and in the file model.tr. Other files produced by Gnosis during the simulation
will include model.csv, model.seed, and model.log. The file model.csv con-
tains snapshots of the overall state at specified instants during a simulation, namely
whenever the Gnosis primitive command dump is executed as part of a run; due
to this convention, for any given Gnosis model model.gn, the corresponding file
model.csv is referred to as the dump file. The techniques in this paper are con-
cerned with the data about traces and system state that are found in model.tr and
model.csv, as highlighted in yellow in Figure 1.

Figure 1: Performing a simulation of a model using Gnosis.

1.3 Our Contribution

We have:

• found a way to reason efficiently about properties of the state in a Gnosis
simulation model. This facilitates reasoning about real-world security prob-
lems by extending existing work on the Gnosis simulation tool at HP Labs;

• produced a method to extract meaningful state information from multiple
simulation runs of a Gnosis model;

• implemented a Python program which demonstrates the approach on a sam-
ple dump file, for a single run of a simulation;

• provided a means of specifying, in logical form, properties of state that we
are interested in, so that simulation outputs can be filtered accordingly, and

• developed an algorithm for converting the selected (filtered) state changes
into a finite state automaton, which is a formal abstract model that captures
the essential properties of the original model under consideration.

3



1.4 Related and Previous Work

The results we have obtained in this report in the context of the Gnosis simulation
framework are novel, and to our knowledge there is no directly comparable im-
plementation. However, we are conscious of the relevance and linkages between
our work and related work on automata chains and process mining. We are also
conscious of the fact that our ideas require basic knowledge of automata theory,
process algebra, formal verification and model checking in particular. For a stan-
dard reference refer to [5, 1].

In the context of resource-based logics such as SCRP (Synchronous Calculus
of Resource and Process [6, 7]), Matthew Collinson developed some preliminary
tools for basic resource-oriented model checking of Core Gnosis.

1.4.1 Automata Chains

The authors Grastien, Cordier, Largouët [8] have devised a formal theory of au-
tomata chaining, namely, ways to join together automata with common states. This
is related, but much more extensive, to our method of joining together the automata
extracted from different simulation runs. In our approach, we match state labels
from different runs and only identify them if their labels are identical; an area
for future work is to investigate more sophisticated ways of merging automata to-
gether, particularly for special or corner cases where additional transitions (often
just ε-transitions) are needed to merge more complex automata.

1.4.2 Process Mining

After the work described in this report was completed, we became aware of related
work by Van der Aalst and others on process mining [10]. The key difference
between our approach and that advocated by the creators of process mining lies in
their preference for the use of Petri net models rather than finite-state automata.
However, we note that it is possible to convert Petri net models to automata, and
that in [10] a tool is described that can be used to model-check LTL formulae over
process models extracted from logs. Certainly the objectives of process mining are
very much in alignment with the ideas presented here, and we envisage carrying
over relevant ideas into our work.

2 The Extraction Algorithm

We have conceived a method of analysing essential properties of multiple runs of
a simulation model, particularly in the context of the Gnosis modelling and simu-
lation framework. Our method extracts information from the output of each sim-
ulation run, namely information about state changes, and constructs a graph cor-
responding to a finite state automaton with a simple state transition function. The

4



graphs from multiple runs can be combined into one bigger automaton, and this lat-
ter construction is a particularly useful representation of characteristic behaviours
in the original model. The automata produced by the procedure are amenable to
subsequent analysis and reasoning via model-checking techniques.

Our method presupposes the existence of:

• a simulation model M (which includes statements that produce observable
outputs when run)

• a list L = v1,v2, . . . ,vk of “watch variables” (which are variables in the model
whose state changes produce observable output)

• a simulator (in our experiments we have been focusing on the Gnosis tool)
and a means of running it repeatedly on the simulation model to produce
dump files.

The method itself only makes use of the output of Gnosis when the model M
is simulated; in particular our solution just processes the dump files produced.
Let D = d1,d2, . . . ,dn denote the set of dump files2 generated by running Gnosis n
times on model M.

2.1 Algorithm for Extracting State Information from Gnosis Simula-
tions

Each run of the Gnosis simulator on an input model model.gn will produce two
files of interest, the trace file model.tr and corresponding dump file model.csv.
In order to extract meaningful information from a run of model.gn, we need to
link together the information found in these two files; in particular, we need to
know, for each step in the trace (or at least specified steps in the trace; where each
step assumed to appear as a single printed line), what the corresponding values are
of all the variables in the model — namely, the system state.

A naı̈ve approach to linking trace information with the states of variables at
different points during execution would be to include explicit print statements
outputting the values of variables in different parts of the original model model.gn.
However, our approach here is to extract information from simulation runs without
modifying the source model.

In order to link the state information contained in a dump file with the trace in-
formation in a corresponding trace file we use Algorithm 2.1. What this algorithm
does is look for strings in the trace file (specifically, sentinel characters that we
have defined in advance or simply a string such as ”Dumping State...”). Whenever
such a string is encountered we know that the current system state is in the next
line of model.csv (such is the functionality provided by the dump; statement in

2In the case of Gnosis, in order to run the algorithms presented in this section we need to make
use of both execution traces and dump files, the latter being listings of the states of variables in a
model at specified time instants in a particular run.

5



Gnosis) so we pick up the current system state from line dind of the dump file and
increment the line counter ind.

The output of Algorithm 2.1 is a sequence of pairs of lines from the trace file
model.tr, and matching system state printouts from model.csv. This function-
ality is required for the main algorithm in this report, which uses the system state
to filter out parts of simulation traces.

Algorithm 1 The algorithm for linking traces and dump files produced by Gnosis
during simulation runs.

1: Set ind← 1
2: for all lines/transitions ti in a trace file T produced by Gnosis during a run do
3: if the dump marker/sentinel is found in ti then
4: Match ti with line dind of the dump file D; Output (ti,dind).
5: Set ind← ind +1
6: else
7: Ignore line ti of trace
8: end if
9: end for

2.2 Processing A Single Simulation Run

The algorithm in this section extracts state changes from a single simulation run
and produces a graph consisting of these changes. The procedure is simple, and
it is the crux of the main algorithm in section 2.3. In Appendix C.1 an example
execution of the algorithm is shown.

The method processes each trace ti where (1 ≤ i ≤ n), as described in Fig-
ure 2.2.1.

Algorithm 2 process single run(ti,W ): The algorithm for processing a single
simulation run.

1: for all lines in the file ti do
2: Initialize, for all i, currentstate[vi]← state[v0].
3: for all watch variables v1, . . . ,vi, . . . ,vk ∈W do
4: if state[vi] 6= currentstate[vi] then
5: Add transition currentstate[vi]⇒ state[vi] to graph/automaton
6: currentstate[vi]← state[vi]
7: end if
8: end for
9: end for

10: Assemble the list of all state changes and construct a directed graph Gi whose
nodes are labelled by the values of v1,v2, . . . ,vk, and whose edges correspond
to transitions.

6



Figure 2: Processing a trace from a single simulation run to generate an automaton.
In the example, the set of watch variables is {v2,v4} and no filter/formula has been
applied.

7



Lines 50-69 of the Python program in Appendix A implement the algorithm
in Figure 2.2.1. Figure 2 shows how this algorithm would work on a sample sim-
ulation run, where the highlighted columns correspond to watch variables (in this
case named v2 and v4). By identifying the state changes in these columns, the al-
gorithm produces the graph shown in the right hand side of the figure. This graph
is the first main result produced by our method, and the intention is that, with the
refinements presented in the following sections, it provides a useful abstraction of
the behaviour described by a simulation run.

2.2.1 Filtering State Changes of Interest

We have implemented a generalisation of the algorithm in Figure which identifies
only a selection of the state changes found in a trace. This is very important for
practical applications, as not all state changes are created equal: for many types of
analysis, only certain state changes may be meaningful. By writing propositional
formulas over the watch variables in a simulation model, it is possible to specify
which state changes should be output. We have implemented this functionality in
the program in Appendix A - see lines 35-44 and 56, which invokes the formula
evaluation procedure on each line of a trace. The formula evaluation procedure is
shown in lines 128-138, and it invokes the other sub-procedures parseformula

and evalformula as appropriate.
Note that despite the similarity with explicit-state model checking, that is not

what we are doing here: in fact, as we shall see, we are interested in performing
model-checking of formulas on the graph that is produced from the algorithm in
Figure 2.2.1, but only after we have filtered the state changes of interest. We
are evaluating formulas on the states of a simulation run only for the purpose of
determining whether they should be included in the final, extracted automaton. It
is on that automaton that we would want to check formulae that express security
or correctness requirements, as in model checking.

The program in Appendix A demonstrates the algorithm for a realistic trace
file (this file is similar to a real Gnosis trace file, and is intended for demonstration
purposes). The script also demonstrates the ability to filter lines from di, so that
only lines satisfying a logical condition are used in constructing the graph. This
is a first example of reasoning over the state changes in a simulation model. See
Figure 2 for a diagram demonstrating the approach for a single simulation run.

2.2.2 Example of filtering:

If the watch variables for a given model are v2,v4, which can take values in A,B
and 1, . . . ,10 respectively, we could specify that the graph should be constructed
only by considering lines where v2 = A and v4 > 1. For the demonstration script
in Appendix A we would give the formula v2=A,v4>1 as input in this case (along
with a suitable dump file), where the comma (,) indicates conjunction of formulae.

The method is generalised to the processing of multiple runs of a simulation

8



model by processing each dump file as above and then unifying the graphs/au-
tomata produced in each case together, producing one large automaton. It is this
large automaton that may be deemed to characterize essential features of the orig-
inal model, and we envisage checking logical formulae on this automaton (model
checking).

2.3 Main Algorithm: Processing Multiple Simulation Runs

Figure 3 shows a simple algorithm for merging the automata corresponding to sev-
eral different runs into a single automaton. The algorithm in its presented form is
almost trivial, as all it does is detect edges appearing in both graphs G and gi (by
comparing the states in s and e for equality) and adds the edges that are in gi but are
missing from G. Line 6 of this algorithm is where a more sophisticated comparison
could be introduced in future work.

Definition 1 (Emergent Structure) We will use the term emergent structure to re-
fer to the mathematical object generated (a finite-state automaton) by performing
the extraction algorithm in Figure 3 to multiple runs of a given simulation model.

Algorithm 3 process multiple runs(T,W ): The algorithm for combining the
automata/graphs from multiple simulation runs with traces ti ∈ T and watch vari-
ables v ∈W .

1: G← /0
2: for all simulation runs with respective traces ti do
3: gi ← process single run(ti,W ) where W is the set of watch variables

(see Figure 2.2.1).
4: for all edges (s,s′) in G do
5: for all edges (e,e′) in gi do
6: if (s = e) then
7: Do nothing; keep edge as is
8: else if (s 6= e) then
9: Add edge (e,e′) to G

10: end if
11: end for
12: end for
13: end for

9



2.3.1 Computing Probabilities of Particular Subtraces

The main algorithm we have discussed will produce the structure of a graph identi-
fying state transitions that occur in multiple runs of a simulation; as we have seen,
we can control which state transitions are to be included in the graph by selecting
watch variables and applying filters on the values of variables. We can go fur-
ther, and annotate state transitions with the probability of their occurrence, using
the simple frequency-based definition of probability. To do this, we introduce a
counter into Algorithm 3 which is incremented each time a particular state tran-
sition is found in a simulation run/trace. We compute the probability using the
following definition:

Pa→b =
weight of state transition a→ b in current trace

total number of transitions from state a to other states
(1)

The variables a,b range over all states in the graph/automaton being generated.
We require that for all values of a,b, the sum of all probabilities is unity:

∑
a,b

Pa→b = 1 (2)

Detailed Example of Probability Calculation. Consider a simulation that pro-
duces three different runs with the following traces. The simulation has three des-
ignated states denoted PROCESSING, SANITIZING, COMPLETE (which are assumed
to correspond to changes in some watch variables of interest).

Simulation Run R1 Simulation Run R2 Simulation Run R3

PROCESSING→SANITIZING PROCESSING→SANITIZING PROCESSING→SANITIZING

SANITIZING→COMPLETE SANITIZING→PROCESSING SANITIZING→PROCESSING

PROCESSING→SANITIZING PROCESSING→SANITIZING

SANITIZING→COMPLETE SANITIZING→PROCESSING

SANITIZING→COMPLETE

Here are the frequencies of occurrence (the weights) of the different transitions
in each run:

XXXXXXXXXXXTransition
Run

R1 R2 R3

PROCESSING→SANITIZING 1 2 2
SANITIZING→PROCESSING 0 1 2
SANITIZING→COMPLETE 1 1 1

Ignoring the order in which transitions occur in each run, we can compute the
probability that a transition from state x to state y will occur (where x,y ∈ {A,B,C}
in this example) using equation 1:

10



• In run R1:

Transition PROCESSING→SANITIZING occurs with probability 1
1 = 1.

Transition SANITIZING→COMPLETE occurs with probability 1
1 = 1.

Resulting graph:

• In run R2:

Transition PROCESSING→SANITIZING occurs with probability 2
2 = 1.

Transition SANITIZING→PROCESSING occurs with probability 1
2 .

Transition SANITIZING→COMPLETE occurs with probability 1
2 .

Resulting graph:

• In run R3:

Transition PROCESSING→SANITIZING occurs with probability 2
2 = 1.

Transition SANITIZING→PROCESSING occurs with probability 2
3 .

Transition SANITIZING→COMPLETE occurs with probability 1
3 .

Resulting graph:

The final metric we use as a probability for each of the transitions in all simu-
lation runs is the average of the probabilities of the particular transition in all runs.
If we denote by pavg

x→y this metric we get, for the above example:

pavg
PROCESSING→SANITIZING =

1+1+1
3

= 1

pavg
SANITIZING→PROCESSING =

0+ 1
2 +

2
3

3
=

7
18

pavg
SANITIZING→COMPLETE =

1+ 1
2 +

1
3

3
=

11
18

The final output of the algorithm, once the above values have been computed,
will be this graph:

11



3 Discussion and Directions for Future Work

The advantages of this approach are manifold. First, Gnosis simulation models
tend to be extremely large and complex. Identifying entire regions of Gnosis mod-
els with a single state descriptor can be extremely useful in practice, as it allows the
user to abstract away from many details; in fact, the finite-state automata generated
by our technique can be easily visualised and this would surely assist in the human
understanding of any Gnosis model.

So the first great advantage of our method is the conciseness it provides in rela-
tion to existing techniques for understanding Gnosis models. The most important
advantage is that the method paves the way for model checking of Gnosis models,
or parts thereof. Model checking is a well-established means of gaining assurance
and confidence in the correctness of systems, and most importantly it is useful for
automatically detecting conceptual flaws or errors in system designs. We note here
that in order for an analysis using our method to be truly beneficial, the initial
Gnosis simulation model has to be a very accurate representation of the real-world
problem under consideration. Our method creates an abstraction of an existing
model, so there is always the danger of obtaining overly general conclusions or
results that are divorced from important aspects of the real-world system or prob-
lem under consideration. Despite the above caveat, we believe that our method of
analysis can bring significant benefits if combined with a suitable model-checking
algorithm and a suitable logic for specifying properties of multiple runs of models.

We have identified a number of directions for future work, including those
listed below.

Model checking of security and correctness properties of emergent structure.
One of the primary motivations for the algorithms presented in this paper is the
need to be able to formally and automatically check correctness and security prop-
erties of systems being simulated. Simulation of system behaviour can yield useful
insights, but it is never exhaustive; model checking, on the other hand, consists of
systematically exploring all possible behaviours of a given model. By extracting
the emergent structure of a simulation, we can systematically explore its behaviour
(as the emergent structure is much smaller than the original model) and identify
potential issues, bugs, unexpected possibilities. The automata produced by the
algorithms presented here are discrete, probabilistic finite state automata and so
could be fed into probabilistic model checking tools such as PRISM [9]. While we
have not discussed time explicitly in this paper, there are many simulation mod-
els for Gnosis in which time plays an important rôle, and so we foresee potential
linkages to timed automata [2], model checking of LTL and CTL properties [5], as
well as use of tools such as UPPAAL and KRONOS (see [3] for a discussion of
these tools) for analysis. Statistical model checking [4] also looks like a promising
direction to consider.

12



Reconstruction of simulation models from emergent structure. A fundamen-
tal assumption of the algorithms presented in this paper has been that the user has
little or no knowledge of the structure of the original models being analysed. It is
conceivable that, by processing the emergent structure corresponding to a given set
of simulations, one could try to reconstruct and/or approximate the original sim-
ulation model. This can be seen as a form of reverse engineering, and developing
tools to do this may well be useful for security applications.

Derivation of structural models from statistical data and discovery of process
patterns and symmetries. The intention of our work has been to extract structure
from outputs of simulations that are related; the emergent structure is supposed to
provide insight into the behaviour expressed by a complex simulation model. In-
vestigating further how to extract process patterns from system traces is an essential
part of this work. Furthermore, when the original model contains much statistical
data, we may be interested in extracting only the overall structure and ignoring as
much statistical noise as possible. Clearly, this is an important area for future work.

Comparison of related simulation models for trace refinement. Clearly, the
emergent structures of different simulation models can be compared directly; rather
than just checking for equality, one could compare emergent structures for relations
of refinement and containment. It could be that some traces of one model appear
in another when this is not expected at all. We believe that this is a particularly
important issue to investigate in security applications, where particular types of
attacker present specific, but repeatable patterns of behaviour.

Separation of system/environment behaviours from attacker descriptions and
assumptions. In current work on security analytics with Gnosis, it is common
for a single simulation model to contain descriptions of a system, its environment,
and a particular attacker “all in one.” By extracting emergent structure from models
that contain only system behaviour, we can consider different attacker models in a
very modular fashion.

We envisage a number of applications of these techniques in the context of
security analytics and in the analysis of security properties of complex, concurrent
system models. Here are some of these:

• Analysis of security logs of cloud infrastructures

• Detection of patterns of malicious behaviour in system behaviour

• Comparison of attacker models

13



4 Conclusions

In this paper we have presented a method, and experimental implementation, for
extracting emergent structure from system simulation models. We have docu-
mented algorithms for extracting state changes from individual simulation runs,
and combining these state changes together when processing multiple runs. The
purpose of this work is to obtain meaningful representations of complex simula-
tion models and we envisage many different practical applications in future work.

For the purposes of this paper, we have focused on the Gnosis simulation
framework, which is used extensively for security analytics modelling at HP Labs.
While formal verification tools have not been previously developed for use in con-
junction with Gnosis, we have developed algorithms and a prototype that serves as
a starting point for explicit-state model checking of Gnosis simulations. We believe
this is a very promising avenue of research, with important practical applications
and exploitation routes.

References

[1] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT
Press, 2008.

[2] Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and
tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz Rozenberg, editors, Lec-
tures on Concurrency and Petri Nets, Advances in Petri Nets, volume 3098,
pages 87–124. Springer-Verlag, 2004.

[3] B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Sch-
noebelen, and P. McKenzie. Systems and Software Verification: Model-
Checking Techniques and Tools. Springer, 2001.

[4] E. M. Clarke and P. Zuliani. Statistical model checking for cyber-physical
systems. In ATVA 2011: 9th International Symposium on Automated Technol-
ogy for Verification and Analysis, volume 6996 of Lecture Notes in Computer
Science, pages 1–12, 2011.

[5] Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, 1999.

[6] Matthew Collinson, Brian Monahan, and David Pym. Semantics for struc-
tured systems modelling and simulation. In Proceedings of Simutools 2010.
ACM Digital Library, 2010. ISBN: 78-963-9799-87-5.

[7] Matthew Collinson, Brian Monahan, and David Pym. A Discipline of Math-
ematical Systems Modelling. College Publications, 2012.

14



[8] Alban Grastien, Marie-Odile Cordier, and Christine Largouët. Incremental
diagnosis of discrete-event systems. In Sixteenth International Workshop on
Principles of Diagnosis (DX-05), 2005.

[9] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification of
probabilistic real-time systems. In G. Gopalakrishnan and S. Qadeer, ed-
itors, Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), volume 6806 of LNCS, pages 585–591. Springer, 2011.

[10] Wil M. P. Van Der Aalst. Process Mining. Springer Verlag, 2011.

15



A Python Source Code for the Processor

1 # Program to process output of Gnosis and generate automaton

from a single run

2 # by looking only at dump file

3

4 # Author: Nick Papanikolaou, HP Labs

5 # (Based on joint research with Brian Quentin Monahan)

6

7 # use file "fakedumpfile.txt" for initial example

8 # Interesting cases:

9 # st1,st2 with st1=A,var2=3

10 # st1,st2 with var2=2

11

12 # rhs could be a variable!! next step

13 # general reasoning about logs

14 # security event logs

15

16 import fileinput

17 import string

18

19 def processdumpfile(f) :

20 # Input dump file and split into a list of lines

21 cont=’’

22 for line in f:

23 if (len(string.strip(line))>0) and (line[0]!=’#’):

24 cont = cont + line

25

26 all_lines = cont.splitlines()

27

28 # Input comma-separated list of watch variables (state

descriptors)

29 varlist = raw_input("Enter comma-separated list of

variable names to follow: ").split(",")

30

31 # Pick up actual variables listed in dump file, and find

columns needed

32 indicesofcols = locatecolumns(varlist,all_lines)

33

34 #NEW: Filtering - input a formula

35 formula = raw_input("Enter comma-separated list of

formulae (comma is conjunction): ")

36

16



37 all_formulas = formula.split(",")

38 listofformulastoevaluate = []

39 if len(formula)!=0:

40 for f in all_formulas:

41 (indexofvar, op, rhs) = parseformula(f,all_lines)

42 listofformulastoevaluate.append((indexofvar,op,rhs))

43 else:

44 print "No formula entered."

45

46 # Examine the columns corresponding to watch variables and

find state changes

47 saved_state = []

48 state_changes_list = []

49 transition = ’’

50 for line in all_lines:

51 curr_line_fields = line.split("\t")

52 # Check if this line satisfies all formulae

53 if len(listofformulastoevaluate)==0:

54 filter_holds = True

55 else:

56 filter_holds =

multiformulaevaluate(listofformulastoevaluate,

curr_line_fields)

57 if (filter_holds):

58 curr_state=[]

59 for i in indicesofcols:

60 curr_state = curr_state + [curr_line_fields[i]]

61 if ((saved_state==[]) or (saved_state==varlist) or

(curr_state==varlist)):

62 saved_state = curr_state

63 elif (curr_state != saved_state):

64 transition = str(saved_state) + ’ -> ’ +

str(curr_state)

65 print transition

66 state_changes_list = state_changes_list +

[transition]

67 saved_state = curr_state

68 else:

69 print "(no state change)"

70

71 # Look through list of state changes and count them to

compute edge weights

72 newlist = []

73 for el in state_changes_list:

17



74 weight = 0

75 for el2 in state_changes_list:

76 if (el==el2):

77 weight = weight + 1

78 newlist = newlist + [(el, weight)]

79 weight = 0

80

81 # Print final list of state changes with weights

82 print "List of state changes corresponding to variables "

+ str(varlist) + " is as follows:"

83 unique = list(set(newlist))

84 for t in unique:

85 print t[0], "with weight ", t[1]

86

87 def locatecolumns(varlist, inputlines):

88 columnnames = inputlines[0].split("\t")

89 indicesofcols = []

90 currindex = 0

91 for var in varlist:

92 currindex=0

93 while (currindex < len(columnnames)):

94 if (columnnames[currindex]==var):

95 indicesofcols.append(int(currindex))

96 currindex = currindex + 1

97 else:

98 currindex = currindex + 1

99 return indicesofcols

100

101 def evalformula(operator,rhs,value):

102 if (operator==’<’):

103 return (value < rhs)

104 elif (operator==’>’):

105 return (value > rhs)

106 elif (operator==’=’):

107 return (value == rhs)

108 else:

109 print "Error evaluating formula!"

110

111 def parseformula(formula, inputlines):

112 ## tokenize formula and print out its parts

113 ops = [’>’,’<’,’=’]

114 formulaparts = []

115 for op in ops:

116 formulaparts = formula.split(op)

18



117 if len(formulaparts)>1:

118 formulaparts = formulaparts + [op]

119 break

120 lhs = formulaparts[0]

121 op = formulaparts[2]

122 rhs = formulaparts[1]

123

124 indexofvar = (locatecolumns([lhs], inputlines))[0]

125 print "Variable in the formula is ", lhs, " and its

column number is", indexofvar

126 return (indexofvar, op, rhs)

127

128 def multiformulaevaluate(formulaelist, linefields):

129 result = True

130 for formula in formulaelist:

131 col = formula[0]

132 op = formula[1]

133 rhs = formula[2]

134 e = evalformula(op,rhs,linefields[col])

135 #print "Evaluating formula", op, rhs, "on column",

col, "with value", linefields[col], " RESULT = ", e

136 #comma corresponds to conjunction of formulae

137 result = result and e

138 return result

139

140 def main():

141 dumpfile = open("fakedumpfile.txt")

142 processdumpfile(dumpfile)

143

144 # DONE (WEIGHT) Add code above for adding weights to

transitions and then more for computing probability of a

transition!

145 # DONE Input should be list of variables to watch (more than

one!)

146 # DONE Evaluate formulae on each line

147 # TODO Richer formulae - disjunction (;) and brackets

148 main()

19



B Contents of Example Input File

1 # An example of what a trace might look like

2

3 TIMER ID var1 var2 st1 st2

4 0.00 1 1 1 A X

5 0.35 1 1 3 A X

6 0.46 1 1 3 A Y

7 1.00 1 1 3 A X

8 1.02 1 1 3 A Y

9 1.10 1 1 2 B Y

10 1.15 1 1 2 B Y

11 1.20 2 1 2 B Y

12 1.25 2 1 2 B Y

13 1.46 2 1 2 B X

14 1.59 2 1 2 A Y

15 13.0 2 2 4 A X

16 14.0 2 2 3 C Z

17

18 # end of example trace file

20



C Sample Runs of the Processor

C.1 Running The Processor With Two Watch Variables

Below is the listing of the processor’s outputs when given the input file in Sec-
tion B.

1 Enter comma-separated list of variable names to follow:

var2,st2

2 Enter comma-separated list of formulae (comma is conjunction):

3 No formula entered.

4 [’1’, ’X’] -> [’3’, ’X’]

5 [’3’, ’X’] -> [’3’, ’Y’]

6 [’3’, ’Y’] -> [’3’, ’X’]

7 [’3’, ’X’] -> [’3’, ’Y’]

8 [’3’, ’Y’] -> [’2’, ’Y’]

9 (no state change)

10 (no state change)

11 (no state change)

12 [’2’, ’Y’] -> [’2’, ’X’]

13 [’2’, ’X’] -> [’2’, ’Y’]

14 [’2’, ’Y’] -> [’4’, ’X’]

15 [’4’, ’X’] -> [’3’, ’Z’]

16 List of state changes corresponding to variables [’var2’,

’st2’] is as follows:

17 [’2’, ’X’] -> [’2’, ’Y’] with weight 1

18 [’2’, ’Y’] -> [’2’, ’X’] with weight 1

19 [’2’, ’Y’] -> [’4’, ’X’] with weight 1

20 [’3’, ’Y’] -> [’3’, ’X’] with weight 1

21 [’3’, ’Y’] -> [’2’, ’Y’] with weight 1

22 [’1’, ’X’] -> [’3’, ’X’] with weight 1

23 [’3’, ’X’] -> [’3’, ’Y’] with weight 2

24 [’4’, ’X’] -> [’3’, ’Z’] with weight 1

C.2 Running The Processor With Two Watch Variables And A State
Filter

Below is the listing of the processor’s outputs when given the input file in Sec-
tion B.

1 Enter comma-separated list of variable names to follow:

var2,st2

2 Enter comma-separated list of formulae (comma is

conjunction): var2>2

3 Variable in the formula is var2 and its column number is 3

21



4 [’3’, ’X’] -> [’3’, ’Y’]

5 [’3’, ’Y’] -> [’3’, ’X’]

6 [’3’, ’X’] -> [’3’, ’Y’]

7 [’3’, ’Y’] -> [’4’, ’X’]

8 [’4’, ’X’] -> [’3’, ’Z’]

9 List of state changes corresponding to variables [’var2’,

’st2’] is as follows:

10 [’3’, ’X’] -> [’3’, ’Y’] with weight 2

11 [’4’, ’X’] -> [’3’, ’Z’] with weight 1

12 [’3’, ’Y’] -> [’3’, ’X’] with weight 1

13 [’3’, ’Y’] -> [’4’, ’X’] with weight 1

22


