
Introduction to Lexing and
Parsing Techniques∗

Nick Papanikolaou

nikos@dcs.warwick.ac.uk

http://www.warwick.ac.uk/go/nikos

Lecture 1: Lexical Analysis

1 / 44

a
As part of module CS245: Automata and Formal Languages.

Introduction 2 / 44

Putting Things in Context

■ Study of automata, grammars and languages is relevant to the design and
implementation of compilers and interpreters.

■ These lectures will be concerned with the processes of lexing and parsing, which
are the main phases of any compiler.

■ We will discuss both the relevant theory, and how to use lexer and parser
generators in practice.

3 / 44

1

Outline

1. The Chomsky Hierarchy; Recognizers

2. Translators and Compilers

3. Lexical Analysis

4. Using Scanner Generators

4 / 44

The Chomsky Hierarchy 5 / 44

Chomsky Hierarchy

■ Noam Chomsky introduced a classification for grammars and the languages they
generate, proposing they may provide an adequate model for natural languages.

■ The classification imposes restrictions on the forms of production a grammar
may have.

■ Four types of grammar:

◆ Unrestricted Grammars (Type 0)

◆ Context Sensitive Grammars (Type 1)

◆ Context–Free Grammars (Type 2)

◆ Regular Grammars (Type 3)

6 / 44

2

Chomsky Hierarchy: Restrictions

Unrestricted Grammars may have productions of the form α ⇒ β where α and β are
arbitrary strings of symbols with α 6= ǫ.

Context Sensitive Grammars have productions of the form α ⇒ β such that β is at
least as long as α.

Context–Free Grammars have productions of the form A ⇒ α, where α is a sequence
of variable or terminal symbols.

Regular Grammars are either:

left–linear grammars which have productions of the form A ⇒ wB or A ⇒ w

only; or

right–linear grammars which have productions of the form A ⇒ Bw or A ⇒ w

only,

where w is a possibly empty string of terminals.

7 / 44

Chomsky Hierarchy: Theorem

The classes of grammars correspond to four types of languages (Note: R.E.Ls. =
Recursively Enumerable Languages):

unrestricted grammars (Type 0) ↔ R.E. Ls.

context sensitive grammars (Type 1) ↔ C.S. Ls.

context–free grammars (Type 2) ↔ C.F. Ls.

regular grammars (Type 3) ↔ R.Ls.

Hierarchy Theorem. The Type-i languages properly include the Type-(i+1) languages
for i=0, 1, and 2.

In other words,

Type 0 Ls. ⊃ Type 1 Ls. ⊃ Type 2 Ls. ⊃ Type 3 Ls.

8 / 44

3

Recognizers

A recognizer is a machine which accepts a given language. The recognizers
corresponding to the different classes of languages in the Chomsky Hierarchy are:

R.E.Ls. (Type 0) ↔ Turing Machines

C.S.Ls. (Type 1) ↔ Linear Bounded Automata

C.F.Ls. (Type 2) ↔ Pushdown Automata

R.Ls. (Type 3) ↔ Finite Automata

The ↔ indicates an equivalence between the classes of languages shown and the
corresponding machines that recognize them. This is studied in more detail elsewhere
in the course.

9 / 44

Translators and Compilers 10 / 44

Overview

■ The implementation of a translator involves programming, or generating code for,
a deterministic finite automaton known as a lexer, and a pushdown automaton
known as a parser.

■ Programming languages generally lie in the class of C.F.Ls.; we will restrict our
attention to regular grammars which are relevant to lexing, and
context–free grammars, used for parsing.

11 / 44

Translators

A translator is a tool that inputs a program in a source language and converts it into
an object program in a target language.

A compiler is a translator from a high–level source language to a low–level target
language.

The tasks of any compiler form part of two processes: analysis and synthesis. We will
be concerned only with analysis, which is divided into stages:

1. lexical analysis, (Lecture 1)

2. syntactic analysis, (Lectures 2 and 3)

3. semantic analysis.

12 / 44

4

Lexical Analysis

■ A lexer separates the source program into pieces known as tokens.

■ It reads the source program one character at a time.

■ It handles issues such as whitespace and statements spread over many lines.

■ Often a lexer stores constants, labels and variable names in a symbol table.

■ A lexer outputs, for each token ti, a pair (γi, N(ti)), where N(ti) is an integer
representing the token internally, and γi is the address of the token in the symbol
table.

13 / 44

Syntactic Analysis

■ A parser groups the tokens produced by the lexer into larger syntactic classes, e.g.
expressions, statements, procedures.

■ It outputs a syntax tree, whose leaves are tokens and all nonleaves are syntactic
class types.

■ A parser uses the grammar of the language in which the program is expressed to
determine what the syntactic classes are.

14 / 44

Semantic Analysis

Semantic analysis involves interpreting the meaning of the source program; the
semantic analyzer typically reduces expressions to some intermediate representation.

Example 1. The expression
(A+B)*(C+D)

is transformed by the semantic analyzer into the following triple:

(

(+, A, B, T1), (+, C, D, T2), (∗, T1, T2, T3)

)

15 / 44

5

Lexical Analysis in Depth 16 / 44

The Lexer (aka Scanner)

■ A scanner produces a stream of tokens or lexical units from the source program.

■ Tokens are actually the terminal symbols of the grammar of the source language.

■ The scanner’s secondary functions are (typically):

◆ to eliminate whitespace (tabs, blanks, comments);

◆ to find lexical errors (e.g. misspellings of keywords);

◆ to store certain classes of tokens in a symbol table;

◆ to determine the types of tokens.

17 / 44

Example Output of a Lexer

SUM: A = A + B;

GOTO DONE;

Output of lexer for each token ti is (γi,N(ti)) as shown:

SUM 1 3

: 0 11

A 2 1

= 0 6

A 2 1

+ 0 5

B 3 1

; 0 12

GOTO 0 4

DONE 4 3

; 0 12

The string constant corresponding to token ti is known as a lexeme. Each lexeme is represented by an
internal token number N(ti).

18 / 44

6

Why Lexing and Parsing are Separate

There are two ways of integrating lexer and parser:

1. implementing lexer as a separate pass, producing a big output file or token list in
memory;

2. implementing lexer as a function next token(), called from the parser whenever
it is needed.

The second way is used more often in practice.

However, the advantages of treating lexing as a separate pass are:

■ reading one character at a time from disk can be slow, so doing it in one go makes
parsing faster;

■ the lexer makes more information available to the parser (viz. symbol tables).

19 / 44

Tokens

There is no completely general rule for deciding what constitutes a token and what
does not, given a particular grammar. The following are the most common kinds of
tokens:

■ keywords, e.g. if, then, else, goto, . . .

■ identifiers, e.g. myconst, . . .

■ constants, e.g. 1, 2, true, . . .

■ operators, e.g. +, *, &&, . . .

■ delimiters, e.g. (,), {, }, . . .

20 / 44

7

Describing Tokens

One way of specifying the tokens in a programming language is to use a regular
grammar.

Example 2 (Natural Numbers).

〈unsigned int〉 ::= 0

|
...

| 9

| 0〈unsigned int〉

|
...

| 9〈unsigned int〉

21 / 44

Describing Tokens cont.

■ A regular grammar is a generative means of specifying tokens.

■ For our purposes, a recognitive means of describing tokens is desirable.

■ Describing tokens in terms of how they can be recognized, or accepted, is done
using finite–state automata (FSA).

FSA reads an input tape one character at a time and changes internal state depending
on character read:

r e a d n o t y e t

FSA

HEAD

22 / 44

8

Describing Tokens using FSA

FSA are expressed using transition diagrams.

Here is a transition diagram for an FSA which accepts decimal real numbers with at
least one digit after the decimal point.

S A B
. digit

digit

digit

23 / 44

Implementing a Lexer/Scanner

Suppose we want to implement a lexer for identifiers in a programming language.

Identifiers consist of at least one letter, followed optionally by one or more digits. Here
is the grammar for identifiers:

〈letter〉 ::= a | · · · | z | A | · · · | Z

〈digit〉 ::= 0 | · · · | 9

〈ident〉 ::= 〈letter〉 (〈letter〉 | 〈digit〉)

24 / 44

DFA for Identifiers

The DFA corresponding to the grammar for identifiers is as follows:

0 1 2

3

letter other

digit/other

letter/digit

accept

error

25 / 44

9

Implementing the DFA

To implement the lexer for identifiers, two structures are used: the character class
map and the transition table:

Character a--z A--Z 0--9 other

Class letter letter digit other

The transition table is a representation of the FSA state changes. The table contains
the output of the function next state(curr state, toktype) :

0 1 2 3

letter 1 1 – –
digit 3 1 – –
other 3 2 – –

26 / 44

Code for the lexer

char := next_char();

curr_state := 0;

done := false;

token_value := "";

while (not done) {

class := char_class[char];

curr_state := next_state[curr_state, class];

switch (state) {

case 1: /* still reading an identifier */

token_value := token_value + char;

char := next_char;

break;

27 / 44

10

Code for the lexer p. 2

case 2: /* accept state */

token_type := IDENTIFIER;

done := true;

break;

case 3: /* error */

token_type := ERROR;

done := true;

break;

}

}

return token_type;

Key point: DFA implemented simply as a case statement on the current state.

28 / 44

Using Scanner Generators 29 / 44

Scanner Generators

Scanner generators automatically construct code from regular expression–like
descriptions. They:

■ construct a DFA;

■ apply state minimization techniques to reduce the DFA to the smallest possible
one;

■ output code for the scanner.

A key issue in code generation is handling the interface with the parser.

30 / 44

11

Regular Expressions

a An ordinary character stands for itself.

ǫ The empty string.

M | N Alternation; choosing M or N.

M · N Concatenation; M followed by N.

M∗ Repetition of M zero or more times.

M+ Repetition of M one or more times.

M? Option; zero or one occurrence of M.

[a-zA-Z] Character set alternation.

. Any single character except newline.

"**man!" Quotation; a string literal.

Remember: regular expressions and regular grammars are equivalent; they both
generate the class of regular languages.

31 / 44

Regular Expressions for Tokens

Here are some examples of regular expressions describing tokens in a programming
language.

〈if 〉 if

〈ident〉 [a-z][a-z0-9]∗

〈num〉 [0-9]+

〈real〉 ([0-9]+"."[0-9]∗)|([0-9]∗"."[0-9]+)

Comments ("//"[a-zA-z]∗"\n")

32 / 44

lex: A Scanner Generator

■ lex is a well-known and widely supported scanner generator designed by AT&T in
the 70s; it was traditionally bundled with UNIX.

■ flex is an improved, faster version of lex and is compatible with lex input files.

■ Input to lex is a file containing a definition of the tokens in a language; tokens are
defined using regular expressions.

■ For each token there must be a corresponding action, specifying how the lexer
should handle it.

■ The output of lex is a C program containing an implementation of the lexer; the
lexer is called through the yylex() function.

■ Note: lex is designed to be used with the yacc parser generator.

33 / 44

12

lex: File Structure

A lex input file has the following structure in general:

Part A (comments, C code, mnemonics, start states)
%%

Part B (rules defining tokens and actions)
%%

Part C (C code including main(...))

Part A usually contains definitions of token numbers, e.g.
#define T id 1

#define T realconst 2

etc.

34 / 44

lex: An example

%{ //PART A

#define T_eof 0

#define T_id 1

#define T_real 2 ...

#define T_while 52

%}

%% //PART B

"and" { return T_and; } ...

":=" { return T_assign; }

"while" { return T_while; }

// Regexp for real numbers:

([0-9]+"."[0-9]*)|([0-9]*"."[0-9]+)

{ return T_real; }

%% //PART C ...

35 / 44

13

lex: An example p.2

%% //PART C continued

void main() {

int token;

do {

token = yylex();

printf("token=%d, lexeme=\"%s\"\n",

token, yytext);

} while (token != T_eof);

}

This code will generate a lexer which prints out each token found in the input.
Normally, additional code for handling errors should be added.

99K Play with lex/flex at home. L99

36 / 44

Introducing javacc and sablecc

■ javacc and sablecc are tools which generate lexical analyzers and parsers in Java.

■ Each of these tools has a different format for lexical specifications, as we shall see.

■ To generate parsers with these tools, one must supply a complete grammar. But
whether you’re using javacc or sablecc, both lexical specs and grammar go in the
same file.

■ We will look at the syntax for lexical specifications corresponding to the token
types considered on slide 12, namely 〈if 〉, 〈ident〉, 〈num〉 and 〈real〉.

37 / 44

14

javacc Syntax for lexer

/* Java compilation unit with class decl. */

PARSER_BEGIN(MyParser)

class MyParser {}

PARSER_END(MyParser)

/* For the regexp on the right,

* return token on the left. */

TOKEN : {

< IF: "if" >

| < #DIGIT: ["0"-"9"] >

| < ID: ["a"-"z"] (["a"-"z"] | <DIGIT>)* >

| < NUM: (<DIGIT>)+ >

| < REAL: ((<DIGIT>+ "." (<DIGIT>)*) |

((<DIGIT>)* "." (<DIGIT>)+) >

}

38 / 44

javacc Syntax for lexer p.2

/* definitions of things to skip */

SKIP : {

<"//" (["a"-"z"])* ("\n" | "\r" | "\r\n")>

| " " | "\t" | "\n"

}

/* Standard code for main method */

void Start() :

{}

{ (<IF> | <ID> | <NUM> | <REAL>)* }

39 / 44

15

sablecc Syntax for the same lexer

Helpers

digit = [’0’..’9’];

Tokens

if = ’if’;

id = [’a’..’z’]([’a’..’z’] | (digit))*;

number = digit+;

real = ((digit)+ ’.’ (digit)*) |

((digit)* ’.’ (digit)+);

whitespace = (’ ’ | ’\t’ | ’\n’)+;

comments = (’//’ [’a’..’z’]* ’\n’);

Ignored Tokens

whitespace, comments;

40 / 44

Review 41 / 44

Summary

In this lecture we have discussed:

■ the hierarchy of grammars and languages they generate;

■ the fact that regular grammars and CFGs are most useful in practice, and are the
basis for lexical and syntactic analysis of programming languages respectively.

■ the correspondence between different types of grammars and the automata that
recognize, or accept them.

■ the analytical processes in a compiler.

42 / 44

16

Summary p. 2

We also discussed:

■ the overall functions of a lexer/scanner;

■ the representation of tokens using finite automata, regular grammars and
regular expressions;

■ how a DFA corresponding to a lexer may be implemented using a set of case
statements;

■ how to use lex, javacc and sablecc.

43 / 44

Next Lecture

The next lecture will introduce the parsing problem, which deals with recognizing
context–free languages.

■ We will have some more to say on grammars and their properties; as we shall see,
parsing is more difficult than lexing.

■ We will find out whether context–free grammars are really adequate to model
programming language syntax;

■ We will see what a context–sensitive grammar actually looks like;

44 / 44

17

	Introduction
	Putting Things in Context
	Outline

	The Chomsky Hierarchy
	Chomsky Hierarchy
	Chomsky Hierarchy: Restrictions
	Chomsky Hierarchy: Theorem
	Recognizers

	Translators and Compilers
	Overview
	Translators
	Lexical Analysis
	Syntactic Analysis
	Semantic Analysis

	Lexical Analysis in Depth
	The Lexer (aka Scanner)
	Example Output of a Lexer
	Why Lexing and Parsing are Separate
	Tokens
	Describing Tokens
	Describing Tokens cont.
	Describing Tokens using FSA
	Implementing a Lexer/Scanner
	DFA for Identifiers
	Implementing the DFA
	Code for the lexer
	Code for the lexer p. 2

	Using Scanner Generators
	Scanner Generators
	Regular Expressions
	Regular Expressions for Tokens
	lex: A Scanner Generator
	lex: File Structure
	lex: An example
	lex: An example p.2
	Introducing javacc and sablecc
	javacc Syntax for lexer
	javacc Syntax for lexer p.2
	sablecc Syntax for the same lexer

	Review
	Summary
	Summary p. 2
	Next Lecture

