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The purpose of these notes is to detail the sequence of operations that take place
in quantum teleportation, and to explain the steps in Deutsch’s quantum algorithm.

This material complements the CS406 lecture slides.

1 Quantum Teleportation

The process for teleporting a qubit () = «|0) + 3 |1), with «, € C, is shown in the
form of a quantum circuit in Figure 1.
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Figure 1: Quantum circuit diagram for the teleportation protocol. The value of i
depends on the two measurement outcomes.

We will now go through each step in the circuit. The overall quantum state to start
with is the tensor product of the three individual states; let’s call this [).



W) =) ®10) ®0)
= (a|0) + B 1)) ®00)
= «|000) + B 100)

A Hadamard gate is applied to the second qubit, which is equivalent to applying
the operator I ® H ® I to the state ). This gives us ;).

[Wby) = (T H®I) [bo)
—oa- (I©H®I)[000)+ B - (I®H®I)[100)
= o 110) ® HI0) ® I|0) + B - 1]1) @ H|0) @ I/0)

=a-|0)® —=(10) + 1)) ®10) + B - [1) @ —=(]0) + 1)) @ [0)
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Then the Controlled-Not gate is applied from the second to the third qubit, giving
by).
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p,) = (I®CNot)hp,)
(0.6
— E(Im®CN0t(!OO>)+I\O>®CNot(HO>))+

5
+75(11) @ CNot (100)) +I[1) & CNot (110))
= 5(1000) & 1011)) + 5 (1100) +111)

The next step is to apply the Controlled-Not gate from the first to the second qubit,
which transforms the quantum state into [\p3):



p3) = (CNot®I)[b,)
= % (CNot(]00)) ® 110) + CNot(|01)) @ I[1))
_(CNot([10)) © 110) + CNot(|11)) & 1/1))
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Now, the Hadamard gate is applied to the first qubit, leading to state [1,):

5(1000) +[011)) + —=(110) +[101))
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:

00) ® (@l0) + B 1)) + 5101) & (al1) +BI0)) +

+§|1o> @ (c]0) — B 1)) +%H1> ® (a[1) — B 10))

The final form of the expression for state 1),) makes it easy to identify the possible
outcomes of measuring the first and the second qubit, which is what happens next.
The first two qubits are in one of the four possible states |00), [01), [10), [11), and the
state of the third qubit is respectively «|0) + (1), &|1)+B[0), x[0)—p 1), |[1)—B|0) .

Now, the first two qubits are measured, collapsing the state into one of four terms
of the sum in [{,).

If the measurement reduces the state of the first two qubits to [00), the third qubit
is in state [), so no further transformation is necessary (we just apply the identity
operator, I). If the measurement gives [01), the third qubit is the same as [{p) but with



a ‘bit flip,” so we need to apply operator X (a.k.a. ox) to it. In the third case, the third
qubit is the same as [{p) but with a ‘phase flip, so we need to apply operator Z (a.k.a.
0z) to it. In the fourth case, the third qubit is the same as [\p) but with a ‘bit flip’ and
a ‘phase flip,” so we just apply operator Y = XZ (a.k.a. oy) to it. At the end, the state
of the third qubit will be precisely [\), which is the state we started off with. Thus
the state [\p) is teleported from the first qubit to the third qubit.

Let \p5) denote the state of the system after the first two have been measured.
Then:

00) ® (e |0) + B [1)), with probability

) 01y ® («|1) + B 10)), with probability

bs) = 10) ® («|0) — B [1)), with probability
11) ® («[1) — B 10)), with probability

Now, let us denote the outcome of measuring the first qubit by A, and the outcome
of measuring the second qubit by B (so that A, B € {0, 1}). The final stage in the quan-
tum teleportation circuit can be described as the following operation, which produces

the ultimate quantum state [\g):

We) = (1@ 1@ ZAX®) )

Notation 1 The notation Z*XB refers to the operator which results from multiplying
(not tensoring) the operator Z to the power A, with the operator X to the power B. An
operator raised to the power 0 is trivially the constant 1. The operator Y, which is by
definition the product of Z and X, arises when A = B = 1. This notation allows us to

express succinctly the choice of operator in the final step of quantum teleportation. See

also [INCOO].

Example 1 If measurement of the first two qubits leaves them in state |10), i.e. A =1
and B = 0, then the operator Z*X° = Z is applied to the third qubit. Therefore the final

state of the system, in this particular case, becomes:

W) = (I©1®Z)(]10) ® (x[0) — B (1))
= (I D)[10) ® Z(x[0) — 1))
= [10) ® («0) + B (1))

and the third qubit has indeed taken on the initial state to be teleported.



2 Deutsch’s Algorithm

The so-called Deutsch’s problem is to determine whether a one-bit function f : {0, 1} —
{0,1} is constant or balanced. There are exactly four different functions with this
signature; they are denoted f1, f,, f3 and f; and they are defined in the table below.

Input, x | f1(x) | fa(x) | fa(x) | fa(x)
0 0 0 1
1 0 1

From this table it can be seen that f; and f; are constant functions, i.e. f{(0) = f(1)
and f4(0) = f4(1). The functions f, and f; are balanced functions, and, in particular,
we have f,(0) # f,(1) and f3(0) # f3(1).

In order to solve this problem classically, one has to evaluate the chosen function
twice, once for each input. Deutsch’s algorithm demonstrates how quantum paral-
lelism can be used to solve the problem by evaluating the function only once. In what
follows, we will go through the algorithm in a stepwise manner to see how it works;
in particular, we will perform the calculations which arise in each step.

The algorithm can be expressed as a quantum circuit, which operates on two
qubits in the initial state [01). The circuit consists of Hadamard gates, a so-called
oracle Us, and a single measurement. The circuit is illustrated in Figure 2. The quan-
tum state of the two qubits at each stage in the circuit is labelled using the symbols
o), ..., W3). A measurement of the first qubit is performed in the last stage of the
circuit (not shown); if the outcome is 0, this indicates that the chosen function is con-
stant. If the outcome of the final measurement is 1, it means that the chosen function
is balanced.
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Figure 2: Circuit diagram for Deutsch’s algorithm



The oracle, represented by the box in the middle of the circuit, is defined as the

following quantum operator:

Us : [x) ® [y) — [x) ® [y @ f(x)) , where x,y € {0, 1} (1)

As you can see from this expression the operation U; has the effect of flipping the
second qubit if the first qubit is in state |1).

Notation 2 We usually abbreviate tensor products of known qubit states by enclosing
them in a single ket, e.g. |00) instead of |0) ® |0). We can do this also when qubit states
are unknown, but in this case a comma is used to separate the individual states in a
ket; so we would write |x,y) instead of |x) ® |y) . Thus, the definition of U; above can be
rewritten as

Us @ [x,y) — [x,y & f(x))

Notation 3 The symbol & above denotes the exclusive-or operation (XOR) from boolean
algebra. XOR is defined as follows:

Oifa="D>
b pu—
a® { 1 otherwise

In order to understand the operation of the circuit, we could consider each of the
functions fq, f5, f3 and f4 in turn. But we are going to do the calculations in the general
case, independently of which f is chosen.

The input to the circuit is the state \p;) = [01). The Hadamard gate is applied to
both qubits, leading to the quantum state [};):

Wby) = (HeH)0T)

1 1
_ (ﬁ('m | |1>)) ® (ﬁum - |1>)>
_ %(|00>—01>+|10>—|H>)

The next step is the application of the oracle to [{p;). We use the definition of U; to
calculate the resulting state [{,):



N’2> - uf h-l)1>

1
= (Us[00) — U [0T) + U [10) — Us [1T))

(10,0 ® f(0)) — 10,1 @ f(0)) + 1,0 f(1)) — 1,1 & £(1)))
10) @ (10 f(0)) =& f(0) )+ @ (l0&f(1))—1af(1))]

= 10 @ (108 £(0) 18 F(0)) )+ 1)@ (0@ (1)) ~ 18 F(1))

Next, we need to rewrite the state [{,) in a more meaningful form; we have to use
the following proposition.

Proposition 1 For a € {0,1}: [0® a) —[T® a) = (—1)2 - (|0) — [1}).

Proof. For a = 0 the LHS becomes [0 ® 0) — [1 ® 0) = [0) —|1) and the RHS becomes
(=12 (J0) — 1)) = |0) — [1), so both sides are indeed equal.

For a = 1 the LHS becomes [0$ 1) — [1T® 1) = [1) — [0) and the RHS becomes
(=1)- (J0) —[1)) = [1) —|0), so both sides are indeed equal. =

Using proposition 1, we obtain:

) = 310)® (1)1 - () — 1))+ 5 1) @ (<12 (10) — 1)

_ (\%(_1)”0) 0) + %(—1)”1‘ H)) (\iﬁ 0) — % H>)

Look carefully at the above expression. Notice that the transformation does not
seem to have affected the state of the second qubit, which has remained in the state
%U@ —[1)). What is interesting is that the transformation Us has introduced a so-
called phase kick-back in the state of the first qubit; this is a fancy name for the
factors (—1)"® and (—1)"¥. This trick/phenomenon comes up often in the study of
quantum algorithms.

The final part of the algorithm only affects the state of the first qubit, which is now
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For the next part of the calculation, we use the following proposition:

Proposition 2 For a € {0,1}: H (% 0) + %(—1 )2 |1>> =la).

Proof. For a = 0 the LHS becomes H (% 0) + 75 |1)> = |0) and the RHS becomes |0);
both sides are indeed equal.

For a = 1 the LHS becomes H (\% 0) — % !1>> = |1) and the RHS becomes |1); both
sides are indeed equal. =

The Hadamard gate is applied to the first qubit, taking the system to the quantum
state [3):

Ws) = (HOI)[,)

— (_1\fO L _L >
— (1) H(O)@f(1)>®(ﬁ|o> =

Finally, the first qubit is measured; the result is the value f(0) & (1) with certainty.
The value is 0 if f is constant and 1 if f is balanced. If you are not convinced, plug in

a specific function f : {0, 1} — {0, 1} of your choice into the formulae!
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