
Electronic Communications of the EASST
Volume ?? (2010)

10th International Workshop
on Automated Verification

of Critical Systems
(AVoCS 2010)

Static Analysis of Information Release in Interactive Programs

Adedayo O. Adetoye and Nikolaos Papanikolaou

18 pages

Guest Editors:
Managing Editors: Tiziana Margaria, Julia Padberg, Gabriele Taentzer
ECEASST Home Page: http://www.easst.org/eceasst/ ISSN 1863-2122

http://www.easst.org/eceasst/

ECEASST

Static Analysis of Information Release in Interactive Programs

Adedayo O. Adetoye and Nikolaos Papanikolaou

International Digital Laboratory, WMG, University of Warwick

Abstract: In this paper we present a model for analysing information release (or
leakage) in programs written in a simple imperative language. We present the se-
mantics of the language, an attacker model, and the notion of an information release
policy. Our key contribution is the use of static analysis to compute information
release of programs and to verify it against a policy. We demonstrate our approach
by analysing information released to an attacker by faulty password checking pro-
grams; our example is taken from a known flaw in versions of OpenSSH distributed
with the FreeBSD operating system.

Keywords:

1 Introduction

It is often inevitable, during the course of program execution, for sensitive information to be
leaked to the environment; in the presence of an attacker, such leakage — henceforth information
release — can be catastrophic, or at the very least damaging, to the parties with whom the
data is concerned. Ensuring that information release is minimal is a critical requirement in a
variety of applications; this is true, for instance, with authentication, encryption and statistical
analysis software. General purpose applications infected by malicious code, or malware, will
typically release much more information than expected by the user; this is also the case with
Trojan horses (think of a tax-return calculator that releases private financial information to an
unauthorised observer). What the user generally expects in these applications is that the amount
of information release does not exceed what is absolutely necessary for normal operation.

Therefore it is highly necessary to have means of quantifying the information released by a
program, while taking into account its purpose and visible functionality, namely, how it trans-
forms its inputs to publicly observable output. The problem we are then concerned with is how
to check whether the program does not release more than is specified. In other words, we seek a
way of checking that a given program conforms to an information release policy.

In this paper we use concepts from information theory to develop a measure of the information
release of a program. We use static analysis to compute the value of this measure for a given pro-
gram. The intention is that, by comparing the information actually released by the program with
a specification of its expected information release, as stated in a policy, we can judge whether
the program has secure information flow and reject any insecure implementations.

We demonstrate our approach by investigating attacks on password-checking programs, where
timing delays can give clues to potential attackers about the validity of usernames and pass-
words. The examples are inspired by password checking programs used in different versions of
OpenSSH on the FreeBSD operating system.

1 / 18 Volume ?? (2010)

Static Analysis of Information Release in Interactive Programs

Contributions. This paper contributes to the theory of quantitative information flow analysis
and is inspired by work on secure information flow (see e.g. [?]).

As mentioned before, we propose a measure of information release for programs, which takes
into account program functionality as viewed by a particular attacker. In technical terms, func-
tionality is described by the program’s input/output model, or functional model. A given attacker
will have a limited view of a program’s functionality, depending on his or her access to particular
resources, including various clients, servers and channels; we refer to this view as the attacker
model. An attacker can observe the behaviour of a program for different inputs and draw various
conclusions about the way it is implemented. More specifically, repeated observation of a pro-
gram for different inputs will allow the attacker to deduce a partition on the space of program
inputs.

We show that information release is a property of this partition and so establish an important
theoretical link between quantitative analysis and qualitative analysis of information flow. Fur-
thermore, we establish a general model, which can be adapted to different attacker types; the
functional model of a program can be extracted directly from its operational semantics.

We present a flow-sensitive and termination-sensitive static analysis, which quantifies the
amount of information released by a deterministic program with loops and outputs under a spe-
cific attacker model. We prove the correctness of the analysis. To the best of our knowledge, this
paper is the first to present a static analysis that comprehensively accounts for the quantitative
information flow in programs with output interaction in the presence of program divergence.

Preliminaries. A partial equivalence relation (PER) over a set Ω is a symmetric and transitive
binary relation. If, in addition, the PER is reflexive over Ω, then it is an equivalence relation over
that set. For any given set Ω, we denote the set of all PERs over Ω to be PER(Ω). Similarly,
ER(Ω) denotes the set of all equivalence relations over Ω. Let R ∈PER(Ω) be a PER, the domain
of definition of R is given by dom(R) ≜ {ω ∈Ω ∣ω Rω}, and for any ω ∈ dom(R), the equivalence
class of ω is given by [ω]R ≜ {ω

′ ∈Ω ∣ω Rω
′}. We denote by [Ω]R ≜ {[ω]R ∣ω ∈ dom(R)} the

set of all equivalence classes of R. The kernel of a function f ∶Ω→ V is an equivalence relation
over Ω, which relates every pair of elements ω,ω ′ ∈Ω iff f (ω) = f (ω

′).
A PER over Ω models information by its ability to distinguish, or not, the elements of the

set Ω. Two elements of Ω are said to be indistinguishable (lack of knowledge) by a PER if
they are related by that PER, otherwise the PER distinguishes (has knowledge about) them. Let
R,R′ ∈ PER(Ω) be PERs, R′ is said to be more informative than R, written R ⊑ R′, iff for every
ω,ω ′ ∈Ω, σ R′σ ′ Ô⇒ σ Rσ

′. The intuition behind R ⊑ R′ is that if R′ cannot distinguish a pair,
neither can R, by the contrapositive, R′ distiguishes more than R and is thus more informative.
The combination of information in R and R′ is achieved via the operation ⊔, where for all ω,ω ′ ∈
Ω,ω (R⊔R)ω

′ iff ω Rω
′ and ω R′ω ′. It is clear that R ⊑ R′ ⇐⇒ R⊔R′ = R′. The extension of ⊔

to sets is defined in the usual way, such that for anyR ⊆PER(Ω), ω ⊔Rω
′ iff ∀R ∈R, ω Rω

′. It
is clear that PER(Ω) is partially ordered by ⊑ and that ⊔ is the corresponding least upper bound
or join operation.

The operation ⊔ does not preserve the domain of PERs, hence we define a domain preserving
version, F, as follows. Let R ∈PER(Ω), and let D ⊆Ω. Define a domain completion operation on
R, relative to D, to be CD(R) such that ∀ω,ω ′ ∈ Ω, ω CD(R)ω

′ iff ω R ω
′ or ω,ω ′ ∈ dom(R)/D.

AVoCS 2010 2 / 18

ECEASST

It is easy to see that CD(R) ∈ PER(Ω) since it the union of two disjoint PERs. Now let R1,R2 ∈
PER(Ω), and let D = dom(R1)∪dom(R2). Define the domain preserving join operation as RF
R′ ≜ CD(R)⊔CD(R′). The extension of F to sets is defined such that for any R ⊆ PER(Ω), and
D = ⋃R∈Rdom(R), 2R ≜ ⊔R∈RCD(R). Define the partial order relation, ⊑±, relative to F, on
PER(Ω) so that for any R,R′ ∈ PER(Ω), R⊑±R′ ⇐⇒ RFR′ = R′.

Lemma 1 For any set Ω, the partially ordered set ⟨PER(Ω),⊑±,F⟩ is a complete lattice.

Let Ω be a set. The map µ ∶P(Ω)→ [0,1] to the closed real interval [0,1] is a probability
measure over Ω if µ(Ω) = 1, and for any disjoint X ,Y ⊆ Ω, µ(X ∪Y) = µ(X)+µ(Y). If µ is a
probability measure over Ω, and X ⊆ Ω, then µ ∣X is a conditional probability measure (condi-
tioned on X), where for any Y ⊆ Ω, µ(Y ∣X) = µ ∣X(Y) = µ(Y ∩X)/µ(X). A set Y ⊆ Ω is called
an event. For singleton events, we shall write µ(ω) instead of µ({ω}), and µ(ω ∣X) instead of
µ({ω} ∣X) for the conditioned counterparts.

Let µ be a probability measure over Ω, the entropy due to this measure is defined as H(µ) ≜
−∑ω∈Ω µ(ω) logµ(ω). Similarly, for a conditional probability measure µ ∣X , the entropy is
given by H(µ ∣X) ≜ −∑ω∈Ω µ(ω ∣X) logµ(ω ∣X). Let R ∈ PER(Ω) be a PER. We define the
family of conditional probability measures induced by R over µ by µ ∣R = (µ ∣X)X∈[Ω]R . The
entropy of µ ∣R is given byH(µ ∣R) =∑X∈[Ω]R µ(X)H(µ ∣X).

1.1 Syntax and Semantics of the While Language.

In this section we present the core imperative language, While, which has loops and input-output
interaction. The syntax (Figure 1) and the operational semantics (Figure 2) of While are largely
familiar.

c ∶∶= skip ∣ z ∶= e ∣read z ∣writee ∣c;c ∣if(b)thencelsec ∣while(b)doc

Figure 1: The While Language

In the language, expressions are either boolean-valued (with values taken from B ≜ {tt,ff}),
or integer-valued (taken from Z). Program states, , are maps from variables, in Var, to values.
The evaluation of the expression e at the state σ ∈ is summarised as σ(e). Expression evalua-
tions are performed atomically and have no side-effect on state. The set of free variables of the
expression e is denoted by FV(e). The projection of the state σ to Z ⊆ Var is denoted by σ↓Z .
A program action, ranged over by a, can either be an internal action τ , which is not observable
ordinarily; or it can be an output action (via a write command), where the expression value can
be observed. The operational semantics is specified through transition relations between expres-
sion configurations (⟨e,σ⟩ τÐ→ ⟨σ(e),σ⟩) and command configurations (⟨c,σ⟩ aÐ→ ⟨c′,σ ′⟩). A
special terminal command configuration, ⟨⋅,σ⟩, indicates termination in the state σ . The trace
of a While program P, starting from the state σ ∈ , is denoted by ⟨P,σ⟩ a0Ð→ ⟨P1,σ1⟩

a1Ð→⋯, ac-
cording to the operational semantics. The trace of P at the state σ is said to terminate if there is
a natural number n such that ⟨P,σ⟩ a0Ð→⋯ an−1Ð→ ⟨⋅,σ ′⟩, written also as ⟨P,σ⟩⇓ σ

′; otherwise, the

3 / 18 Volume ?? (2010)

Static Analysis of Information Release in Interactive Programs

⟨skip,σ⟩ τÐ→ ⟨⋅,σ⟩ ⟨z ∶= e,σ⟩ τÐ→ ⟨⋅,σ[z↦ σ(e)]⟩ ⟨read z,σ⟩ in(n)Ð→ ⟨⋅,σ[z↦ n]⟩

⟨write e,σ⟩ out(σ(e))Ð→ ⟨⋅,σ⟩ ⟨c1,σ⟩ aÐ→ ⟨⋅,σ ′⟩
⟨c1;c2,σ⟩ aÐ→ ⟨c2,σ ′⟩

⟨c1,σ⟩ aÐ→ ⟨c′1,σ ′⟩
⟨c1;c2,σ⟩ aÐ→ ⟨c′1;c2,σ ′⟩

⟨b,σ⟩ τÐ→ ⟨tt,σ⟩ ⟨c1,σ⟩ aÐ→ ⟨c′1,σ ′⟩
⟨if(b)thenc1elsec2,σ⟩ aÐ→ ⟨c′1,σ ′⟩

⟨b,σ⟩ τÐ→ ⟨ff,σ⟩ ⟨c2,σ⟩ aÐ→ ⟨c′2,σ ′⟩
⟨if(b)thenc1elsec2,σ⟩ aÐ→ ⟨c′2,σ ′⟩

⟨b,σ⟩ τÐ→ ⟨ff,σ⟩
⟨while(b)doc,σ⟩ τÐ→ ⟨⋅,σ⟩

⟨b,σ⟩ τÐ→ ⟨tt,σ⟩ ⟨c,σ⟩ aÐ→ ⟨c′,σ ′⟩
⟨while(b)doc,σ⟩ aÐ→ ⟨c′;while(b)doc,σ ′⟩

Figure 2: Operational Semantics of While

trace is said to be nonterminating, and P diverges at σ .

1.2 Attacker Models

The information gained by an attacker through a program is determined by what the attacker
can observe during the program’s execution. Hence the analysis of secure information release is
carried out with specific attackers in mind. We formalise the attacker’s observational power as a
rewrite of the labels of the standard transistion system of the program to an induced transistion
system. This allows us to parametrise the static analysis with the specific attacker model against
which the analysis is secure. Let T = ⟨S,Ð→,A⟩ be the labelled transition system of a program in
the concrete semantics, then the observational power of an attacker A over this program induces
another transition system TA = ⟨S,Ð→A,AA⟩, whereAA is the set of actions that can be observed
by A, and Ð→A⊆ S ×AA×S is the transition relation as seen by A. Typically, Ð→A is defined as
rewrite rules over Ð→. As usual A∗A is the Kleene closure of AA, and we abreviate by

αÐ→A, the
sequence of transitions

a1Ð→A
a2Ð→A . . . in TA, where α = a1,a2, . . . ∈A∗A.

To illustrate the attack model, we introduce an attacker A, which, in addition to its ability to
observe all external action in the standard semantics, is also able to observe the passage of time by
counting the number of the primitive program commands executed. The transition relationÐ→A

as seen by this attacker is defined, for any of the small-step command-configuration transition in
Ð→, as

⟨c,σ⟩ aÐ→ ⟨c′,σ ′⟩

⟨c,σ⟩⟨a,t+1⟩Ð→A ⟨c′,σ ′⟩
[t] ⟨c,σ⟩ aÐ→ ⟨⋅,σ ′⟩

⟨c,σ⟩⟨a,t+1⟩Ð→A ⟨c′,σ ′⟩
[t] (1)

Thus, if the program makes a small step transition in the standard semantics at the “time” t, the
attacker observes the increment of counter t by 1, in addition to the action a performed in the
standard semantics.

AVoCS 2010 4 / 18

ECEASST

1.3 Modelling and Analysis Framework

We envisage an automated software platform for computing the information release of arbitrary
While programs, and for comparing this quantity with a specification of information, given by
a policy. The formal definition of information release is given in Section 3, while the means
of computing information release for arbitrary programs through static analysis is given in Sec-
tion 4; Information release policies are described in Section 5.

INSERT DIAGRAM

2 Quantifying Information Release

How should we quantify information flow in a program? To motivate our approach, we shall start
by analysing a few simple programs to illustrate the basic idea. The analysis is performed in the
context of a simple imperative While language, whose full syntax and semantics are presented
in Section 1.1. The write construct in the language is for program output, such that for a given
expression e, the statement writee prints the result of evaluating e to the program output. The
attacker is assumed able to observe the output value. The precise definition of what the attacker
observes under a given attack model is presented in Section ??.

Suppose that the secret h ∈ {0,1,2,3} is a parameter to the following four programs:

• P1 ≜ writeh−h

• P2 ≜ writeh mod 2

• P3 ≜ if(h ≤ 1)thenwrite1elsewrite2

• P4 ≜ writeh.

It is intuitively clear that P1 releases the least (no) information about h, whereas P4 releases
the greatest (all) information about the secret h. Can we capture this intuition in a quantitative
sense? Firstly, being deterministic, we can model these programs as functions from the input
space H = {0,1,2,3} to an output space, which we can also take to be H in this example. So,
P1 induces a constant function, f1 such that for all h ∈ H, f1(h) = 0, whose kernel is given by
κ1, where for all h,h′ ∈ H, h κ1 h′. Similarly, P2 induces a function whose kernel is κ2, defined
such that h κ2 h′ iff h = h′ mod 2. For P3, the kernel κ3 of the induced function is defined such
that h κ3 h′ iff h,h′ ∈ {0,1} or h,h′ ∈ {2,3}. Finally, for P4, the kernel of the induced funtion
is κ4, where h κ4 h′ iff h = h′. Figure 3 shows the partitioning of H by the kernels ki, and how
the programs Pi transform these partitions. For example, the arrow labelled P4 shows that given
the initial knowledge represented by κ1, the attacker’s final knowledge is modelled by κ4. By
following the arrows labelled P2 and P3, we obtain the transformation of the attackers knowledge
from κ1 via κ2 to κ4, which can be obtained by running the composed program P2;P3.

The information released by these programs can be described qualitatively as the equivalence
relations κi, such that based on the output of the program Pi, the observer cannot distinguish be-
tween between a pair of inputs h,h′ ∈ H if they are related by κi. Thus, qualitatively, P1 releases
the least information because κ1 is the least equivalence relation over H, relating (and therefore
unable to distinguish) any pair of values in H. At the other extreme, P4 releases the greatest

5 / 18 Volume ?? (2010)

Static Analysis of Information Release in Interactive Programs

P1

κ1
P2

κ2

P3

κ3

P4
P3

P2

κ4

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

Figure 3: How programs transform partitions of secret domain H = {0,1,2,3}.

information because the equivalence relation κ4 relates any value in H to itself only, and hence
can distinguish every pair of different values in H. This partitioning behaviour has information-
theoretic interpretation. Quantitatively, each partition of κi induces a conditional probability
measure, the entropy of which charaterises the quantitative information gained - the uncertainty
that remains by knowing that the secret lies within that partition. By taking the weighted mea-
sure of these entropies, indexed by the partitions of κi, we obtain the average uncertainty that
remains after executing the program. The difference between the uncertainty before executing
the program and the uncertainty afterwards gives us a measure of the quantitative information
flow. As will be shown next, this explains the intuition about information flows of the programs
Pi.

Let us assume that the attacker starts with only the knowledge that the secret lies within the
set H, and suppose that the input value is chosen with uniform probability measure, µ , over H,
so that for all h ∈ H, µ(h) = 1

4 . In the case of P1, the attacker’s knowledge is unchanged, as
demonstrated by κ1, which relates all values in H. Consequently, κ1 has a single partition H,
which induces a probability measure µ(⋅ ∣H) (also written as µ ∣H) conditioned on H, which is
the same as the unconditioned measure µ(⋅). Since, for all h ∈H, µ(h ∣H) = µ(h), the difference
in entropy H(µ)−H(µ ∣H) = 0 explains the lack of information flow. For program P2, there
are two partitions Hκ2

1 = {1,3} and Hκ2
2 = {0,2} of κ2. These induce the conditional probability

measures µ ∣Hκ2
1 and µ ∣Hκ2

2 , where µ(1 ∣Hκ2
1) = µ(3 ∣Hκ2

1) = 1
2 and µ(0 ∣Hκ2

1) = µ(2 ∣Hκ2
1) = 0,

and µ(1 ∣Hκ2
2) = µ(3 ∣Hκ2

2) = 0 and µ(0 ∣Hκ2
2) = µ(2 ∣Hκ2

2) = 1
2 . But, µ(Hκ2

1) = µ(Hκ2
1) = 1

2 ,
hence the average uncertainty that remains over H due to the execution of P2 is Eκ2 = µ(Hκ2

1)×
H(µ ∣Hκ2

1)+µ(Hκ2
2)×H(µ ∣Hκ2

2) = 1. Thus, the information released isH(µ)−Eκ2 = 1. Since, µ

is uniform, the program P2 halves the uncertainty remaining over H by revealing the parity of the
2-bit information space. Similarly, P3 reveals one bit of information by halving the uncertainty,
so that the attacker after observing the output knows whether the secret is less than or equal to 1,

AVoCS 2010 6 / 18

ECEASST

or not. Finally, for P4, we have the set of partitions Hi = {i}, for i = 0,1,2,3. Thus for each i, we
have µ ∣Hi, where for all h ∈ H, µ(h ∣Hi) = 1 if h = i and µ(h ∣Hi) = 0 otherwise. Since for any i,
H(µ ∣Hi) = 0, the information released by P4 is given byH(µ)−∑i µ(Hi)×H(µ ∣Hi) =H(µ) = 2.
This result confirms the intuition that P4 releases all information about the secret input.

From the preceeding we can observe informally that any two programs, which induce the
same partitions on the set of inputs, will release the same quantitative information under a given
assumption about the attacker’s initial uncertainty. Secondly, although an the initial probability
measure (the attacker’s uncertainty) is required in the calculation of the information flow, the
actual information flow is a property of the program, specifically, how it partitions its domain, and
the particular choice of initial probability measure is merely a scaling factor, and the particular
choice will not make the program less or more secure. These intuitions are formalised in the
following theorem.

Theorem 1 Let µ and µ
′ be probability measures over Ω, and let R,R′ ∈ PER(Ω) be PERs

over Ω. Then

1. R ⊑ R′ Ô⇒ H(µ ∣R′) ≤H(µ ∣R) .

2. H(µ ∣R) = H(µ)
H(µ ′) ×H(µ

′∣R) .

The first aspect of Theorem 1 establishes an important link between qualitative PER-based
analysis of information flow, and quantitative characterisation of information release. The im-
plication is that in the deterministic case, quantitative information release can be reduced to a
PER-based analysis of information flow, which allows us to carry out the analysis parametrised
by the input distribution. In practice, this means that we do not need the input distribution be-
forehand to analyse the program or system in question, and we can even check whether the
implementation is safe according to a quantitative specification of the amount of information to
be released by comparing PERs. Namely, if we have an input-output model of the system, whose
kernel is R′, and the analysis of the implementation shows that the kernel of the implementation
is less than R′, then the implementation is safe with respect to any desired quantitative informa-
tion release, regardless of the initial assumption about the attacker’s uncertainty. This is useful
because the attacker’s uncertainty may not be known.

3 Static Analysis

In this section we present the concrete static analysis of while programs with respect to an at-
tacker model A. Since the attacker model is clear, we shall simply write the typing judgement
ΓA ⊢ c ∶ R⇒ R′ as c ∶ R⇒ R′.

4 Information Flow Policies

We present a semantic definition of information flow policies, which characterises our intentional
information release requirements. Given a lattice of information, an information flow policy is

7 / 18 Volume ?? (2010)

Static Analysis of Information Release in Interactive Programs

skip ∶ R⇒ R z ∶= e ∶ R⇒ R readx ∶ R⇒ R writee ∶ R⇒ R⊔e ∶ id

c1 ∶ R⇒ R′ c2 ∶ R′⇒ R′′

c1;c2 ∶ R⇒ R′′

Σ
′
1 = {σ

′ ∣σ ∈ Σ,σ(b) = tt,⟨c1,σ⟩⇓ σ
′} Σ

′
2 = {σ

′ ∣σ ∈ Σ,σ(b) = ff,⟨c2,σ⟩⇓ σ
′}

∀σ ,σ ′ ∈ Σ σ R′σ ′ ⇐⇒ σ(b) = σ
′(b) = tt Ô⇒ obs(c1,σ) = obs(c1,σ

′)
σ(b) = σ

′(b) = ff Ô⇒ obs(c2,σ) = obs(c2,σ
′)

σ(b) = tt,σ ′(b) = ff Ô⇒ obs(c1,σ) = obs(c2,σ
′)

if(b)thenc1elsec2 ∶ ⟨Σ,R⟩→ ⟨Σ′1∪Σ′2,RF↑TVarR′⟩

if(b)thenc elseskip ∶ ⟨Σi,Ri⟩→ ⟨Σi+1,Ri+1⟩
Σ
′ = {σ ∈⋃i≥0 Σi ∣σ(b) = ff} ∀σ ,σ ′ ∈ Σ

′,σ R′′σ ′ R′ =2i≥0 RiF↑TVarR′′

while(b)doc ∶ ⟨Σ,R⟩→ ⟨Σ′,R′⟩
Σ0 = Σ

R0 = R

Figure 4: Information Release Typing Rules

a transformer, which sets upper bounds on the information transferred through a program to an
observer. Since the secrets to be protected are stored in program states during computation, our
information lattice is defined as partial equivalence relation over states.

Definition 1 (Information Release Policy) Let be the set of program states and let I ≜PER()
be the set of all partial equivalence relations over . An information flow policy R⇒ R′ is a
transformer over the lattice I such that R ⊑ R′.

The information release policy R⇒ R′ allows the observer to gain at most the information R′

if the observer has a prior information of at least R. Intuitively, the requirement R ⊑ R′ means
that information release policies can only increase the observer’s knowledge. As an example, a
policy that releases the parity of the secret contained in variable x may be defined as: all⇒ Parx,
where Parx is the equivalence relation defined such that ∀σ ,σ ′ ∈ ,σ Parx σ

′ ⇐⇒ σ(x) = σ
′(s)

mod 2. This says that if the observer has no prior information (i.e. cannot distinguish any pair of
states since σ allσ

′ holds for all states), then the observer can distinguish at most the parity of x
after the release.

The information flow transformers R⇒ R′ are also used as security types that can be assigned
to programs to characterise their information release properties. The information release typing
judgement ΓA ⊢ c ∶ R⇒ R′ (under the attacker model A) is valid iff ∀α ∈A∗A and σ1,σ2 ∈

σ1 R′σ2∧ ⟨c,σ1⟩
αÐ→A ⟨c′,σ ′

1⟩ Ô⇒ ∃⟨c′′,σ ′
2⟩ ∈ S ∶ ⟨c,σ2⟩

αÐ→A ⟨c′′,σ ′
2⟩∧σ1 Rσ2.

(2)

The typing judgement ΓA ⊢ c ∶ R⇒ R′ means that under the assumption of initial information R
that the attacker A might have, A can gain at most the information R′ by observing the execution
of c. This semantic definition of information flow ties together the standard program semantics,

AVoCS 2010 8 / 18

ECEASST

the attacker’s observational power, and the information release. Informally, (2) means that the
information flow typing holds iff for any pair of initial states σ1,σ2 of c, which are indistinguish-
able under the released information R′ are also indistinguishable under R, and any observation
α that A can make of the partial execution of c under σ1 can be made as well under σ2. The
first clause ensures that knowledge of A is rising monotonically, and the second ensures that the
execution starting from σ1 cannot be distinguished,based on the attacker’s observation, from the
one starting from σ2. Since R′ and R are symmetric, the same can be said of the observations
made during the partial execution of c under σ2.

A program P is said to satisfy a policy R⇒R′ under the attacker model A iff ∀R1 ∈ I such that
ΓA ⊢ P ∶ R1⇒ R2, we have that R2 ⊑ R1⊔R′.

Authentication Policies. Let us start by considering the archetypal password authentication
program in Figure 9, which models the key steps of the authentication process that we wish
to consider. During these steps, the user-supplied password (u) is compared with a password
(p), which has been previously stored1 in the system and is known only to the legitimate user.
These secrets (or their images) are then compared for equality: if there is a match, the user is
authenticated, otherwise the authentication fails. In Figure 9, an output of 1 signals successful
authentication, and an output of 2 signals authentication failure.

1 if (u = p) then
2 write 1; // authenticated
3 else
4 write 2; // not authenticated

Figure 5: A Model of Authentication

Thus, in an authentication program, the information that we wish to release is the equality or
not of the stored and the user-supplied passwords. Let this program be P, and let its set of states
be , then the equivalence relations over describing this information release is Rauth ∈ ER()
such that ∀σ ,σ ′ ∈ ,σ Rauth σ

′ ⇐⇒ σ(u = p) = σ
′(u = p), which relates any pair of states that

both agree on the equality or not of u and p. Hence, the desired authentication policy is a map
fauth(R) ≜ R⊔Rauth, which declassifies Rauth. This definition is intuitive. For example, on one
hand, if the attacker had no prior knowledge, then the attacker is allowed to gain fauth(all)=Rauth,
which is exactly the declassified information. On the other hand, if the attacker already knows the
user-supplied password u, say by supplying a guess, the attacker’s prior knowledge is the identity
of u, idu ∈ ER(), defined such that ∀σ ,σ ′ ∈ ,σ idu σ

′ ⇐⇒ σ(u) = σ
′(u). In this case, the

information that the policy allows the attacker to gain is fauth(idu) = idu⊔Rauth. But we observe
that σ idu⊔Rauth σ

′ ⇐⇒ (σ(p) =σ(u) =σ
′(p) =σ

′(u))∨(σ(p) ≠σ(u) =σ
′(u) ≠σ

′(p)). This
means that, given the knowledge of u, the attacker does not gain more than the fact that the stored

1 In many modern operating systems a password is not directly stored, but its image, which is usually a secure hash
of the password itself. The authentication process involves checking the hash of the user-supplied password against
the hash of the stored password. In Unix-based systems, salts are also used in order to make dictionary attacks less
successful [?, ?, ?].

9 / 18 Volume ?? (2010)

Static Analysis of Information Release in Interactive Programs

password p is that known u (that is σ(p) =σ(u) =σ
′(p) =σ

′(u)), or that p is not equal to that u
(the σ(p) ≠ σ(u) = σ

′(u) ≠ σ
′(p) part). The static analysis shows that the program of Figure 9

is secure, since P ∶ ⟨ ,all⟩→ ⟨ ,Rauth⟩.

if (u = p) then
write 1; // authenticated

else
write 2; // not authenticated

write u; // attack

Figure 6: A rogue authentication program

Now consider a rogue implementation of the authentication program of Figure 6, which reveals
the user supplied password in addition to the authentication result. The implementation is clearly
insecure, because, even without previously knowing the user supplied password, the attacker
now learns what the password is when authentication succeeds, and learns what the password
is not when authentication fails. The static analysis detects this, because the analysis of this
rogue program, let’s call it P6, is P6 ∶ ⟨ ,all⟩→ ⟨ , idu⊔Rauth⟩. This program is rejected since
idu⊔Rauth /⊑ Rauth as required by the policy fauth.

Now let us consider the quantitative policy for the password program. As demonstrated above,
we only want to reveal whether u and p match or not, and not more. This corresponds to the
quantitative information release due to the partitioning of by Rauth. Thus, the desired quan-
titative policy is f defined such that for any given uncertainty µ over , f (H(µ�)−H(µ)) =
H(µ�)−H(µ ∣Rauth).

Encryption Policies. Encryption is an important primitive that is foundational to the security
of many systems. However, encryption functions do release information about the keys and
messages. It is thus important to be able to characterise the information released by a crypto
algorithm and to check whether a given implementation does not release more than is intended.
To illustrate the approach consider a data backup program which, when given a message and
a key computes the xor of the two and stores the result to a publicly observable place. Thus,
given the key k and message m, the program computes the function enc(k,m) = k xor m. Thus,
the program induces the equivalence relation Rxor on states such that ∀σ ,σ ′ ∈ ,σ Rxor σ

′ ⇐⇒
σ(enc(k,m)) = σ

′(enc(k,m))

5 Example: Password Timing Attacks

AVoCS 2010 10 / 18

ECEASST

1 read user ;
2 read pw;
3 if (member(user,U)) then
4 if (valid (user ,pw)) then
5 write 1
6 else
7 delay na
8 write 2
9 else

10 delay nb
11 write 2

Figure 7: Password-checking program, version 1.

1 read user ;
2 if (member(user,U)) then
3 read pw;
4 if (valid (user ,pw)) then
5 write 1
6 else
7 delay na
8 write 2
9 else

10 delay nb
11 write 2

Figure 8: Password-checking program, version 2.

11 / 18 Volume ?? (2010)

Static Analysis of Information Release in Interactive Programs

1 passed:= false ;
2 attempts :=0;
3 while (passed=false)
4 read user ;
5 if (member(user,U)) then
6 read pw;
7 if (valid (user ,pw)) then
8 write 1
9 passed:=true

10 else
11 attempts := attempts+1
12 delay (na*attempts)
13 write 2
14 else
15 attempts := attempts+1
16 delay (nb*attempts)
17 write 2

Figure 9: Password-checking program, version 3.

AVoCS 2010 12 / 18

ECEASST

6 Conclusions and Future Work

. . .
- typechecking implementation
- how to ensure security of a plugin-based system? if you’ve verified code but not the plugin

-¿¿¿¿ compositionality

13 / 18 Volume ?? (2010)

Static Analysis of Information Release in Interactive Programs

A Proofs

Lemma 1 For any set Ω, the partially ordered set ⟨PER(Ω),⊑±,F⟩ is a complete lattice.

Proof. The proof that ⊑± is a partial order is straightforward. We shall now show that for any
R⊆PER(Ω) and R′ ∈PER(Ω) such that for all R ∈R,R⊑R′, we have that2R⊑±R′. It is clear from
the definition that if D2 = dom(R2) and R1⊑±R2 then dom(R1) ⊆ D2 and CD2(R2) = R2 = R1FR2 =
CD2(R1)⊔R2. Now let D = dom(R′). Hence, by definition 2RFR′ =⊔R∈RCD(R)⊔R′ =R′, since
we know that for all R ∈R,R⊑±R′. Hence, 2RFR′ = R′, which implies 2R⊑±R′, showing the
desired property.

Lemma 2 Let π(X) = {X j ∣ j ∈ J} be a partitioning of the set X, not necessarily covering
X, such that ⋃ j∈J X j ⊆ X, and let µ be a probability measure. We have that µ(X)H(µ ∣X) ≤
∑ j∈J µ(X j)H(µ ∣X j).

Proof. Let Y =⋃ j∈J X j and let Z =X/Y . Define f ∶ X → π(X)∪∅ such that for any x ∈X , f (x)=X j

if x ∈X j and f (x) =∅ otherwise. Thus, because of the partitioning of X , for any x,x′ ∈X such that
x ∉ f (x′), we have that µ(x∣ f (x′))=0 since µ(∅)=0 and {x}∩ f (x′)=∅. Therefore, we have that
∑ j∈J µ(X j)H(µ ∣X j) = −∑ j∈J µ(X j)∑x∈X j µ(x∣X j) log(µ(x∣X j)=−∑x∈Y µ(f (x))µ(x∣ f (x)) log(µ(x∣ f (x)).
Furthermore, since for any x ∈Z,µ(x∣ f (x))=0, we have that∑ j∈J µ(X j)H(µ ∣X j)=−∑x∈X µ(f (x))µ(x∣ f (x)) log(µ(x∣ f (x)).
Now take any x ∈ X , we observe that 0 ≤ µ(f (x)) ≤ µ(X) ≤ 1 since f (x) ⊆ X and µ is a prob-
ability measure. By the same token, 0 ≤ µ(x∣X) ≤ µ(x∣ f (x)) ≤ 1 by the definition of condi-
tioning. Hence, log(µ(x∣X)) ≤ log(µ(x∣ f (x))) ≤ 0. Furthermore, we observe that if f (x) =
∅, µ(f (x))µ(x∣ f (x)) = 0 and µ(f (x))µ(x∣ f (x)) = µ(x) = µ(X)µ(x∣X) otherwise. Hence,
µ(X)µ(x∣X) log(µ(x∣X))≤ µ(f (x))µ(x∣ f (x)) log(µ(x∣ f (x))) Therefore, −∑x∈X µ(X)µ(x∣X) log(µ(x∣X))≥
−∑x∈X µ(f (x))µ(x∣ f (x)) log(µ(x∣ f (x))). That is, µ(X)H(µ ∣X) ≥∑ j∈J µ(X j)H(µ ∣X j).

Theorem 1 Let µ and µ
′ be probability measures over Ω, and let R,R′ ∈ PER(Ω) be PERs

over Ω. Then

1. R ⊑ R′ Ô⇒ H(µ ∣R′) ≤H(µ ∣R) .

2. H(µ ∣R) = H(µ)
H(µ ′) ×H(µ

′∣R) .

Proof. 1. The proof follows immediately from Lemma 2 by induction on the equivalence
classes of R, since R ⊑ R′ implies that each equivalence class X of R is partitioned by a
maximal set {X j ∣ j ∈ J} ⊆ [Ω]R′ of equivalence classes of R′ such that ⋃ j∈J X j ⊆ X .

2.

Proof.

AVoCS 2010 14 / 18

ECEASST

1. This is clear from the definition.

2. Since R′⊑±R′′ then R′′ = R′ FR′′ and hence Σ
′′ = dom(R′′) = dom(R′′)∪ dom(R′). De-

fine R′ such that ∀σ ,σ ′ ∈ ,σ R′ σ
′ ⇐⇒ σ ,σ ′ ∈ Σ

′′/dom(R′). Since Σ
′′ = dom(R′′)

then CΣ′′(R′′) = R′′. Thus, R′′ = R′ FR′′ = CΣ′′(R′)⊔R′′ = (R′ ⊔R′′)∪ (R′′ ⊔R′). Hence,
R′′ ⊔R = R⊔R′ ⊔R′′ because R′ ⊔R = ∅ since dom(R) ⊆ dom(R′), and, R′ and R′ are dis-
joint by definition. Since R′′⊔R = R⊔R′⊔R′′, then R⊔R′ ⊑ R⊔R′′.

3. The symmetry of ↑ZR is clear from the definition. For transitivity, suppose σ ↑ZR σ
′ and

σ
′ ↑ZR σ

′′ hold. Then there exist two sequences of states σ1, . . . ,σn ∈ and σ
′
1, . . . ,σ

′
m ∈

such that for all i = 1, . . . ,n−1 and j = 1, . . . ,m−1 there exist σ
A
i ,σ

B
j ∈ dom(R) such that

σi,σi+1 ∈ havocZ([σA
i]R) and σ

′
j,σ

′
j+1 ∈ havocZ([σB

j]R) and σ = σ1 and σ
′ = σn = σ

′
1 and

σ
′′ = σ

′
m. Thus, transitivity of ↑ZR is clear by concatenating the two sequences of states.

4. The extensivity of havocZ(⋅) is clear from the definition, that is for any Σ ⊆ , we have that
Σ ⊆ havocZ(Σ). Hence, [σ]↑ZR ⊆ havocZ([σ]↑ZR). Now take any σ

′ ∈ havocZ([σ]↑ZR), then
there exists σ

′′ ∈ [σ]↑ZR such that for all y ∈ Var/Z,σ ′(y) = σ
′′(y). Since σ

′′ ∈ [σ]↑ZR then
σ ↑ZRσ

′′ holds. It is thus clear from the definition of ↑ZR that σ
′′ ↑ZRσ

′ holds since σ
′ is be

obtained from σ
′′ possibly by modifying values of variables in Z. Transitivity of ↑ZR means

that σ ↑ZRσ
′ also holds and hence σ

′ ∈ [σ]↑ZR, which means that havocZ([σ]↑ZR) ⊆ [σ]↑ZR.

5. We shall start by showing that ↑X↑Y R = ↑X∪Y R. Let Z = X ∪Y . Then from the definition
of ↑X(⋅) we have that for any σ ,σ ′ ∈ , σ ↑X↑Y R σ

′ iff there exist sequences σ1, . . . ,σn ∈
and τ1, . . . ,τn−1 ∈ dom(↑Y R), such that σ = σ1 and σ

′ = σn and for all i, 1 ≤ i ≤ n− 1
implies σi,σi+1 ∈havocX([τi]↑YR)=havocZ([τi]↑YR) since by (??) [τi]↑YR =havocY([τi]↑YR).
Hence, for all i, 1 ≤ i ≤ n−1 there exist σ

′
i ,σ

′
i+1 ∈ [τi]↑YR such that σi ∈ havocZ({σ

′
i }) and

σi+1 ∈ havocZ({σ
′
i+1}) and since σ

′
i and σ

′
i+1 are related by ↑Y R then by definition there

exist sequences σ
i
1, . . . ,σ

i
mi
∈ and τ

i
1, . . . ,τ

i
mi−1 ∈ dom(R) such that σ

′
i = σ

i
1 and σ

′
i+1 = σ

i
mi

and ∀ j,1 ≤ j ≤ mi−1 − 1 Ô⇒ σ
i
j,σ

i
j+1 ∈ havocY([τ i

j]R). Since σ
′
i ∈ havocY([τ i

1]R) and
σi ∈ havocZ({σ

′
i }) hence σi ∈ havocZ([τ i

1]R). Similarly, σi+1 ∈ havocZ([τ i
mi−1]R). Hence

for any i, 1 ≤ i ≤ n−1 we obtain the sequences σi,σ
i
1, . . . ,σ

i
mi−1,σi+1 ∈ and τ

i
1, . . . ,τ

i
mi−1 ∈

dom(R) such that σi,σ
i
1 ∈ havocZ([τ i

1]R) and σi+1,σ
i
mi−1 ∈ havocZ([τ i

m1−1]R) and for all
j,1 ≤ j ≤ mi−1−1 Ô⇒ σ

i
j,σ

i
j+1 ∈ havocY([τ i

j]R) ⊆ havocZ([τ i
j]R). Since σ = σ1 and σ

′ =
σn, hence by definition, σ ↑ZRσ

′.

The reverse implication is straightforward because by definition σ ↑ZRσ
′ holds iff ∃σ1, . . . ,σn ∈

and τ1, . . . ,τn−1 ∈ dom(R) and σ =σ1,σ
′ =σn such that for all i, i ≤ i ≤ n−1 Ô⇒ σi,σi+1 ∈

havocZ([τi]R). Now, since for any τ ∈ dom(R),[τ]R ⊆ [τ]↑YR and dom(R) ⊆ dom(↑Y R) then
τ1, . . . ,τn−1 ∈ dom(↑Y R) and hence by replacing [τi]R above with [τi]↑YR for all i, we obtain
σi,σi+1 ∈ havocX(havocY([τi]↑YR)) = havocX([τi]↑YR) by applying (??). Hence, σ ↑X↑Y Rσ

′

holds.

Since ↑X↑Y R = ↑X∪Y R, then the fact that set union is commutative means that ↑X↑Y R = ↑X∪Y R =
↑Y∪X R = ↑Y↑X R.

6. Let Σ = dom(↑ZR)∪ dom(↑ZR′). Now define the PERs ↑ZR and ↑ZR′ such that ∀σ ,σ ′ ∈
,σ ↑ZR σ

′ ⇐⇒ σ ,σ ′ ∈ Σ/dom(↑ZR) and σ ↑ZR′σ ′ ⇐⇒ σ ,σ ′ ∈ Σ/dom(↑ZR′). The PERs

15 / 18 Volume ?? (2010)

Static Analysis of Information Release in Interactive Programs

↑ZR and ↑ZR′ both have only one partition, which respectively are the sets Σ1 =Σ/dom(↑ZR)
and Σ2 =Σ/dom(↑ZR′). Therefore, by (??) we have that havocZ(Σ1)=Σ1 and havocZ(Σ2)=
Σ2 since by (??) we know that dom(↑ZR)=havocZ(dom(↑ZR)) and dom(↑ZR′)=havocZ(dom(↑ZR′))
and hence by (??) that Σ = havocZ(Σ), since havocZ(⋅) is idempotent. That is, ↑Z(↑ZR) =
↑ZR and ↑Z(↑ZR′) = ↑ZR′. By definition CΣ(↑ZR) = ↑ZR∪↑ZR, and hence by applying (??), we
know that for any σ ∈ dom(CΣ(↑ZR)), [σ]CΣ(↑ZR) = havocZ([σ]CΣ(↑ZR)), because [σ]↑ZR =
havocZ([σ]↑ZR) and [σ]

↑ZR = havocZ([σ]
↑ZR). Therefore, for any σ ,σ ′ ∈ , σ ↑ZCΣ(↑ZR)σ

′

iff ∃σ1, . . . ,σn ∈ , σ
′
1, . . . ,σ

′
n−1 ∈ dom(CΣ(↑ZR)), such that σ = σ1,σ

′ = σn and ∀i, i ≤ i ≤
n−1 Ô⇒ σi,σi+1 ∈ havocZ([σ ′

i]CΣ(↑ZR)) = [σ ′
i]CΣ(↑ZR). Hence, we have that ↑Z(CΣ(↑ZR)) =

CΣ(↑ZR). Similarly, we obtain ↑Z(CΣ(↑ZR′)) = CΣ(↑ZR′). Since by definition, ↑ZRF ↑ZR′ =
CΣ(↑ZR)⊔CΣ(↑ZR′), hence we obtain ↑Z(↑ZRF↑ZR′) = ↑ZRF↑ZR′ by applying (??).

7. Take any σ1,σ2 ∈ Σ = dom(R) such that (σ1,σ2) ∉ R, then it is clear that [σ1]R∩[σ2]R =∅,
since the states belong to different partitions of R. Hence, havocTVar([σ1]R)∩havocTVar([σ2]R)=
∅. This is so because if there exist σ ∈ [σ1]R and σ

′ ∈ [σ2]R such that havocTVar({σ})∩
havocTVar({σ

′}) ≠ ∅, then σ↓IVar = σ
′
↓IVar and therefore σ↓X = σ

′
↓X . This means that

σ(e) = σ
′(e) since the two states both agree on the values of all the free variables of

e, and hence σ
′ ∈ [σ]R = [σ1]R, which violates our initial assumption that [σ1]R and

[σ2]R are disjoint. This means by the definition of ↑TVarR, that σ ↑TVarR σ
′ iff there ex-

ists σ
′′ ∈ dom(R) such that σ ,σ ′ ∈ havocTVar([σ ′′]R). Thus, we have that for any σ

′′ ∈
dom(R),[σ ′′]↑TVarR = havocTVar([σ ′′]R). Since for any σ1,σ2 ∈ dom(R),(σ1,σ2) ∉R Ô⇒
havocTVar([σ1]R)∩havocTVar([σ2]R)= [σ1]↑TVarR∩[σ2]↑TVarR =∅ Ô⇒ (σ1,σ2) ∉ ↑TVarR,
it follows by the contrapositive that for all σ ,σ ′ ∈ dom(R) =Σ,σ ↑TVarRσ

′ Ô⇒ σ Rσ
′ Ô⇒

σ(e) = σ
′(e).

We shall now show that the information flow and semantic correctness of the static analysis.
Before that, we need to show a property of information flow due to the sequential composition
of programs.

Proposition 1 Let P = P1;P2 be a While program, whose set of states is . Define the PER
⌊P1 ●P2⌋ to be∀σ ,σ ′ ∈ ,σ ⌊P1 ●P2⌋σ

′ iff σ ⌊P1⌋σ ′ and ⟨P1,σ⟩⇓ σ1,⟨P1,σ
′⟩⇓ σ

′
1 implies σ1⌊P2⌋σ ′

1.
Then we have ⌊P⌋ ⊑ ⌊P1 ●P2⌋.

Proof. Take any σ ,σ ′ ∈ such that σ ⌊P1 ●P2⌋σ ′ holds. Then, σ ⌊P1⌋σ ′ holds, which by Defini-
tion ?? means that either P1 terminates under both states σ and σ

′ or that it diverges under both
states, and that the attacker makes the same observation on the traces of the two states, that is,
obs(P1,σ) = obs(P1,σ

′).
In the first case, suppose that P1 diverges under both σ and σ

′, then we have obs(P1,σ) =
obs(P1,σ

′) = obs(P,σ) = obs(P,σ ′) since the trailing subprogram P2 of P cannot be executed
due to the divergence of P1, and hence σ ⌊P⌋σ ′ holds.

Now suppose P1 terminates under both σ and σ
′, then σ ⌊P1 ●P2⌋σ ′ implies that σ ⌊P1⌋σ ′

holds, and there exist σ1,σ
′
1 ∈ such that ⟨P1,σ⟩⇓ σ1 and ⟨P1,σ

′⟩⇓ σ
′
1 and σ1⌊P2⌋σ ′

1 holds. Thus,
obs(P1,σ) = obs(P1,σ

′) and obs(P2,σ1) = obs(P2,σ
′
1), and therefore, obs(P,σ) = obs(P,σ ′),

AVoCS 2010 16 / 18

ECEASST

which means that σ ⌊P⌋σ ′ holds. Thus, ⌊P⌋ ⊑ ⌊P1 ●P2⌋.

Proof. The proof proceeds by exhaustion of the analysis rules.

• The proof for the case when P is the skip statement is straightforward.

• The proof for the case when P is z ∶= e is straightforward.

• Suppose P is write e. Then Σ
′ = Σ = {σ ∣σ ∈ Σ,⟨writee,σ⟩⇓ σ}. Let R1 be defined

such that σ R1 σ
′ iff σ ,σ ′ ∈ Σ,σ(e) = σ

′(e). Since ↑TVarR = R then it is clear, by applying
(??) and (??) of proposition ??, that ↑TVarR′ = R′ since R′ = RF ↑TVarR1. It now remains to
show that RΣ⊔⌊writee⌋ =RΣ⊔R1 ⊑R′⊔RΣ, that is ∀σ ,σ ′ ∈Σ,σ R′σ ′ Ô⇒ σ(e) =σ

′(e).
Let X = FV(e)∩TVar, since TVar variables are assigned before use, and IVar variables
are fixed throughout program execution, then ∀σ ,σ ′ ∈ Σ,σ↓IVar = σ

′
↓IVar Ô⇒ σ↓X = σ

′
↓X .

That is, the values of the X projection of states is a function of the P’s formal parameter
since While is deterministic. It therefore follows from (??) of proposition ?? that ∀σ ,σ ′ ∈
Σ,σ R′σ ′ Ô⇒ σ(e) = σ

′(e).

• Now suppose that P is c1;c2, such that c1 ∶ ⟨Σ,R⟩→ ⟨Σ1,R1⟩ and c2 ∶ ⟨Σ1,R1⟩→ ⟨Σ′,R′⟩.
Then by applying the induction hypothesis to the derivation of c1 and c2 we have that
Σ1 = {σ

′ ∣σ ∈ Σ,⟨c1,σ⟩⇓ σ
′} and Σ

′ = {σ
′ ∣σ ∈ Σ1,⟨c2,σ⟩⇓ σ

′} and also that ↑TVarR = R
and ↑TVarR′ = R′ and that ⌊c1⌋⊔RΣ ⊑ R1⊔RΣ and ⌊c2⌋⊔RΣ1 ⊑ R′⊔RΣ1 where σ RΣ1 σ

′ ⇐⇒
σ ,σ ′ ∈ RΣ1 . It is clear that Σ

′ = {σ
′ ∣σ ∈ Σ,⟨c1;c2,σ⟩⇓ σ

′}.

It now remains to show that ⌊c1;c2⌋⊔RΣ ⊑ R′ ⊔RΣ. Now define ⌊c1 ●c2⌋ to be such that
∀σ ,σ ′ ∈ ,σ ⌊c1 ●c2⌋σ

′ iff σ ⌊c1⌋σ
′ and ⟨c1,σ⟩⇓ σ1,⟨c1,σ

′⟩⇓ σ
′
1 Ô⇒ σ1 ⌊c2⌋σ

′
1. Fur-

thermore, define ⇓ = {σA ∈ ∣ ⟨c1,σA⟩⇓ σB} to be the set of all states under which c1
terminates, and define f ∶ ⇓→ such that for all σA ∈ ⇓, f (σA) = σB iff ⟨c1,σA⟩⇓ σB

to represent the transformation of states by c1. Now let R0 ∈ PER() be defined such
that σ R0 σ

′ iff σ ,σ ′ ∈ / ⇓ or σ ,σ ′ ∈ ⇓ Ô⇒ f (σ) ⌊c2⌋ f (σ
′). It is easy to see that

⌊c1 ●c2⌋ = ⌊c1⌋⊔R0.

We know from the analysis rules that R⊑±R1⊑±R′ since R′ is computed by taking a join
F of R1 with some other PERs, and similarly, R1 from R. Hence, RΣ ⊔R1 ⊑ RΣ ⊔R′, by
applying (??) of proposition ??, since Σ ⊆ dom(R) ⊆ dom(R1). Hence, ⌊c1⌋⊔RΣ ⊑ R′⊔RΣ

by combining this fact with the inductive hypothesis. Now suppose that σ (RΣ ⊔R′)σ
′

holds, then σ ,σ ′ ∈Σ and σ R′σ ′ holds. Furthermore, suppose that σ ,σ ′ ∈ ⇓, then we know
that f (σ) ∈ havocTVar({σ}) and f (σ

′) ∈ havocTVar({σ
′}) since c1 does not modify

the IVar projection of states. Hence, σ R′ f (σ) and σ
′R′ f (σ

′) hold by applying (??) of
proposition ??, since ↑TVarR′ = R′ by the induction hypothesis. Therefore, f (σ)R′ f (σ

′)
holds by the transitivity of R′ since σ R′ σ

′ holds. Hence, ∀σ ,σ ′ ∈ ⇓ ∩Σ,σ R′ σ
′ Ô⇒

f (σ)(R′⊔RΣ1) f (σ
′) Ô⇒ f (σ)⌊c2⌋ f (σ

′) since f (σ), f (σ
′) ∈RΣ1 , and ⌊c2⌋⊔RΣ1 ⊑R′⊔

RΣ1 by the induction hypothesis. Furthermore, ∀σ ,σ ′ ∈ (/ ⇓)∩Σ,σ R′σ ′ Ô⇒ σ ⌊c1⌋σ
′

since we have shown above that ⌊c1⌋⊔RΣ ⊑ R′ ⊔RΣ. Hence, we obtain that RΣ ⊔R0 ⊑
RΣ⊔R′ Ô⇒ RΣ⊔R0⊔ ⌊c1⌋ ⊑ RΣ⊔R′⊔ ⌊c1⌋ = RΣ⊔R′. Now since ⌊c1 ●c2⌋ = ⌊c1⌋⊔R0, then
RΣ⊔ ⌊c1 ●c2⌋ ⊑ RΣ⊔R′ Ô⇒ RΣ⊔ ⌊c1;c2⌋ ⊑ RΣ⊔R′ by applying proposition 1.

17 / 18 Volume ?? (2010)

Static Analysis of Information Release in Interactive Programs

• Let P be if(b)thenc1elsec2. Then it is clear from the definition that Σ
′ ={σ

′ ∣σ ∈ Σ,⟨if(b)thenc1elsec2,σ⟩⇓ σ
′}.

Now define R1 such that ∀σ ,σ ′ ∈ Σ,σ R1 σ
′ ⇐⇒ σ(b) = σ

′(b) = tt Ô⇒ obs(c1,σ) =
obs(c1,σ

′)∧σ(b) = σ
′(b) = ff Ô⇒ obs(c2,σ) = obs(c2,σ

′)∧σ(b) = tt,σ ′(b) = ff Ô⇒
obs(c1,σ) = obs(c2,σ

′). Since ↑TVarR = R and R′ = RF ↑TVarR1, then we have by apply-
ing (??) and (??) of proposition ?? that ↑TVarR′ = R′. It now remains to show that RΣ ⊔
⌊if(b)thenc1elsec2⌋ ⊑ RΣ ⊔R′. It is clear that RΣ ⊔ ⌊if(b)thenc1elsec2⌋ = R1,
and we know that R1⊑±R′ and dom(RΣ) = dom(R1). Thus, by applying (??) of proposi-
tion ?? we have that RΣ⊔ ⌊if(b)thenc1elsec2⌋ ⊑ RΣ⊔R′.

• Let P be while(b)doc and let R0 =R and Σ0 =Σ such that for all i≥0, if(b)thencelseskip ∶
⟨Σi,Ri⟩ → ⟨Σi+1,Ri+1⟩. Then we have that Σ

′ = {σ ∈⋃i≥0 Σi ∣σ(b) = ff}. It is clear that
Σ
′ = {σ

′ ∣σ ∈ Σ,⟨while(b)doc,σ⟩⇓ σ
′}. Now define R′′ ∈ PER() such that ∀σ ,σ ′ ∈

,σ R′′σ ′ ⇐⇒ σ ,σ ′ ∈Σ
′. Then we have that R′ =2i≥0 RiF↑TVarR′′. It is thus clear from (??)

of proposition ?? that ↑TVarR′ =R′. It now remains to be shown that RΣ⊔⌊while(b)doc⌋⊑
RΣ⊔R′.

Now define C0 ≜ if(b)thencelseskip and for all i ≥ 1, define Ci ≜Ci−1;C0. Further-
more, let Σ

′′ = dom(R′) and take any σ ,σ ′ ∈ Σ such that σ R′σ ′ holds. Then, by definition,
we have that for all i ≥ 0, σ CΣ′′(Ri)σ

′ and σ CΣ′′(↑TVarR′′)σ
′ hold. We first observe that

R′ relates any pair of states only if while (b)do c terminates under both states or di-
verges under both states. That is, can distinguish terminating traces from diverging ones.
To see why, let ΣA = {σ ∈ Σ ∣ ⟨while(b)doc,σ⟩⇓ σ

′} be the subset of Σ under which
while (b)do c terminates and let ΣB = Σ/ΣA be the subset of Σ under which it diverges.
Since P does not modify the IVar projection of states, we know that ΣA ⊆ havocTVar(Σ

′).
Furthemore, ΣB ∩havocTVar(Σ

′) = ∅. But havocTVar(Σ
′) = dom(↑TVarR′′) by applying

(??) of proposition ??, and since ΣB ⊆ Σ
′′ we know also that ΣB ⊆ Σ

′′/dom(↑TVarR′′). This
means that for any σ ,σ ′ ∈ Σ,σ CΣ′′(R′′)σ

′ Ô⇒ σ ,σ ′ ∈ ΣA or σ ,σ ′ ∈ ΣB by the definition
of CΣ′′(R′′). Thus, any pair of states in Σ that are related by R′ have the property that they
both lead to the termination of P or they both lead to its divergence. This leaves us with
only two cases to consider whenever a pair of states in Σ are related by R′, namely the
diverging and the terminating cases.

Now suppose that σ ,σ ′ ∈ Σ and σ R′σ holds and while(b)doc terminates under both σ

and σ
′. Then for all i≥ 0, we have that obs(Ci,σ)= there exist i, j ∈N, such that ⟨Ci,σ⟩⇓ σ1

and ⟨C j,σ
′⟩⇓ σ2

σ1 ↑TVarR′σ ′ Ô⇒ σ1,.

Now suppose that while(b)doc terminates under σ and σ
′ ... TBC.

AVoCS 2010 18 / 18

	Introduction
	Syntax and Semantics of the While Language.
	Attacker Models
	Modelling and Analysis Framework

	Quantifying Information Release
	Static Analysis
	Information Flow Policies
	Example: Password Timing Attacks
	Conclusions and Future Work
	Proofs

