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Abstract

This article is intended as an introduction to the subject of quantum logic, and as a brief
survey of the relevant literature. Also discussed here are logics for specification and analysis
of quantum information systems, in particular, recent work by P. Mateus and A. Sernadas,
and also by R. van der Meyden and M. Patra. Overall, our objective is to provide a high-level
presentation of the logical aspects of quantum theory. Mateus’ and Sernadas’ EQPL logic is
illustrated with a small example, namely the state of an entangled pair of qubits. The "KT"
logic of van der Meyden and Patra is demonstrated briefly in the context of the B92 protocol
for quantum key distribution.

1 Introduction

Quantum theory is widely accepted as the most successful theory of natural science. Its pre-
cepts challenge our fundamental understanding of the universe, and are often in direct conflict
with what our intuition leads us to believe. The implications of quantum theory for informa-
tion processing are very hard to ignore; indeed, to harness the potential of the quantum world
is to enable extremely powerful computational techniques, as well as novel means of data
communication.

With the emergence of practical quantum cryptographic systems and related products, there
is already a growing need for means of designing and analysing systems involving quantum—
mechanical components. For instance, quantum cryptographic protocols involve a sequence
of steps for manipulating given quantum states, and their implementation presupposes the
existence of usable quantum channels, with properties not found in conventional transmission
media; how is one to model protocols such as these and the properties they exploit? How
is one to demonstrate that a quantum—mechanical component operates in accordance with its
specification, or that it guarantees (where applicable) a particular level of security?

Computer scientists have already developed a number of formalisms allowing one to rea-
son about quantum—mechanical behaviour in general as well as about systems consisting of
both conventional and quantum—mechanical elements. This includes quantum programming



languages (intended primarily for the description of quantum algorithms; see the recent sur-
vey [15] by S. Gay), quantum process algebras (capable of describing quantum computational
processes in general, as well as quantum communication schemes), and logics for quantum
information systems.

The subject of ‘quantum logic’ is an interesting line of work, reserved till now for physi-
cists and mathematicians who are interested in the algebraic structures which arise in the math-
ematics of quantum theory. While it is a very specialised subject, quantum logic can provide
insights into the workings of nature, and it has already been put to use by S. Abramsky and B.
Coecke to analyse problems in quantum information [1].

This inquiry will be centred around the logical aspects of quantum theory. The discussion
will remain at a high level, focusing on philosophical problems and the syntax of certain logics.
First we will describe the principles of quantum theory; we will pay attention particularly to
the issue of quantum measurement, which lies at the heart of Birkhoff’s and von Neumann’s
‘quantum logic,” to which we will then turn our attention. This will be followed by a summary
of recent work by R. van der Meyden and M. Patra [36, 37, 28, 27], and by P. Mateus and A.
Sernadas [20, 19], on logics for quantum information systems.

We have chosen to distinguish clearly between quantum logic and ‘logics for quantum
information systems;’ the former is more of a semantic approach to logic, with an emphasis
on mathematical structures, while the latter refers to logical calculi specifically targeted at
applications in quantum computing and quantum information theory. Quantum logic is usually
studied at a very abstract level, and applications or examples of it are quite superficial; our
presentation of quantum logic here is also abstract, and focuses on its semantic connection with
classical propositional logic. For the two other logics, specific examples have been included.
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collaborator, S. Gay, and also my advisor, M. Jurdzinski, for their counsel and encouragement.

Disclaimer. 1 have received input on the material presented here from a number of people,
but any errors or omissions are entirely my own. I welcome any feedback; do feel free to
contact me at nikos@dcs.warwick.ac.uk.

2 Fundamentals of Quantum Theory

A fundamental tenet of quantum theory is the belief that, at the lowest level, the physical
world is discrete, or guantised. This claim is corroborated by several experiments, described
in all the standard texts on the subject (see e.g. the books by Bohm [9], Cohen—Tannoud;ji
et al. [13], Peres [29] and Shankar [34]). More interestingly, quantum theory stipulates that
there is a limit to the amount of knowledge we can gain about a particular quantum system;
this is known as the uncertainty principle. But the greatest departure of quantum theory from
the notions of classical physics is its use of probability laws and, hence, the abandonment
of causality. Quantum theory thus presents us with several philosophical problems, and this
directly affects any attempt to arrive at its formulation in the language of logic. We shall soon
enter into a discussion of the details, but first a brief introduction to the key aspects the theory
is in order.



By the term physical system is understood an identifiable, isolated portion of the physical
universe; such a system is characterised by its state, which is the result of experimental proce-
dures used to isolate and prepare it. An observable is a quantity associated with the state of a
system, which can be directly measured. These are our basic terms of reference.

2.1 The Hilbert Space Formalism

Quantum theory finds mathematical expression in the so—called Hilbert space formalism, which
coordinates to a physical system a state space, namely, a complex—valued vector space #,
equipped with an inner product. The quantum state of a system is described by a vector in this
space; such a vector is normally written in the form |v). Any physical system will have several
degrees of freedom, this being one of its intrinsic properties. The dimension, n, of the state
space associated with the system reflects the number of degrees of freedom of the system in
question. Furthermore, every vector in this space is realisable as an actual physical state.

The concept of quantum state is very subtle and controversial; the traditional view is that
a quantum state represents all that can be known about a system. This view is known to lead
to some contradictions, so many prefer to identify the concept of state not with an individual
element of reality, but with a description of ensembles of systems. If this view is taken, then the
most general form of quantum state is described by a statistical operator, known as the density
operator. We will not adopt this view here; rather, we will deal only with pure quantum states,
for which the former view is satisfactory. The interested reader is referred to advanced texts,
such as [6, 3], for more details.

The state space #H, of a given physical system may or may not be finite—dimensional. It is
only the former case with which we will be concerned here.

Vectors in #, can be added together, producing so—called superposition states. 1t is a
fundamental postulate of quantum mechanics that, if [v) and |w) represent valid physical states
in #,, then so does their superposition, i.e. the state o - |v) + - |w) with o, 3 being scalars.
This principle is put to great advantage in quantum computing, where it is used to generate
complex physical states with no classical analogue.

Example. Consider the two—dimensional Hilbert space #5. A pair of mutually orthogonal,
normalised vectors, such as |0) and |1), forms a basis of #5. Another basis of 74 is the pair of
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The space %, represents the state space, say, of a spin-% particle (where |0) could denote
the particle’s “spin—down” state, and |1) its “spin—up” state), or of a polarised photon (where
|0) would stand for a polarisation angle of 0° and 1 for a polarisation angle of 90°). A more
general, possible state of such a system is given by a linear combination of the basis vectors,
ie. o-]0)+p-[1), for some a,B € C. Quantum mechanics requires that |a] + |B]* = 1.
There is an infinity of such combinations and thus, a quantum system with a state space even
as simple as this has infinitely more realisable states than its classical analogue. A quantum
system whose state space is specifically #5 is known as a quantum bit or qubit. Therefore,
while a classical bit can only take on a single value b € {0, 1} at any given time, a qubit can be
in the basis states |0), |1), or any superposition thereof.

The dual space H," of #,, consists of linear functionals (w| : #, — C, where C is the field



of complex numbers. The inner product (w|v) induces an isomorphism between H," and #,;
in particular, the image (V| € H, of a vector |v) € H, is defined as a function f such that f(|v))
is the inner product of |V/) and |v) .

A quantum system composed of multiple subsystems, whose state spaces }[Ic(l), . .,%,SN)

are known, has a state belonging to the tensor product space, written H“" = }[k(l) 2 HM.
The definition of the tensor product is detailed elsewhere, e.g. [3, 13, 23, 32].

The state of a quantum system evolves over time, this evolution being governed by a unitary
transformation, such a transformation is described by a linear operator U with U~! = UT. The
symbol UT denotes the adjoint of operator U, defined as its conjugate-transpose: UT = (U*)T.

In order to obtain any information about the quantum state of a system, a measurement,
or observation, must be performed. An observable is usually associated with an Hermitian
operator, and the only possible results of measurement are given by the eigenvalues of this
operator. An operator U is said to be Hermitian in a finite—dimensional space if it is self—
adjoint, i.e. if U = UT. We will have more to say about the issue of measurement in the
following section.

2.2 Quantum Measurement

Quantum theory makes of the measurement, or observation, of a quantum system an issue
of great importance; according to the theory, the actual state of a particular quantum system
cannot be determined experimentally, for there is an interaction between the system and the
means of observation. Indeed, this interaction manifests itself as an irreversible disturbance to
the state of the system.

This result makes it difficult to reason about the actual quantum state of a given physi-
cal system. One can only prepare a system in a known state, but any attempt to measure the
state will directly affect it. Therefore, there is a fundamental limit to the amount of informa-
tion one can expect to obtain about a given system. The best we can do is to predict, with
particular probability, the outcome of a specific measurement. Quantum mechanics provides
rules for calculating the probability distributions associated with the measurement of system
observables.

Interestingly, there are pairs of observables that are mutually dependent in such a way that
an accurate measurement of one precludes any reasonable amount of accuracy in the measure-
ment of the other, so that it is impossible to properly measure both at the same time. The most
typical example of this arises when one tries to measure the position and momentum of a par-
ticle simultaneously. It is not our object to expound further on this matter; the reader should
consult one of the several good texts on quantum theory.

For our purposes, it will suffice to say a few words about projective measurements. An
observable described by an Hermitian operator, say M, describes a projective measurement.
When such a measurement is made on a quantum system, the vector corresponding to its state
is projected onto a subspace of the state space. Furthermore, according to Nielsen and Chuang
[23]:

... the possible outcomes of the measurement are the eigenvalues of M. Upon mak-
ing an observation with M of the system in state |w), the probability of getting an
eigenvalue m is given by (w|P,, |w) where P, is the projector onto the eigenspace
of M with eigenvalue m. When the outcome m occurs, the quantum state evolves



to the state given by
B |w)

(W] B [w)

Having established all the necessary background material, we are now ready to start our
journey into the logical aspects of quantum theory, and to enter into a discussion of some of
the logics which have been designed specifically for reasoning about quantum systems.

3 Quantum Logic

The term quantum logic is reserved for the study of the algebraic structures which arise in the
mathematical formalism of quantum mechanics. It was G. Birkhoff and J. von Neumann who
first pointed out that quantum—mechanical propositions, which are the simplest type of ob-
servable associated with a given system, altogether constitute an orthocomplemented, quasi—
modular lattice [8, 6, 21]. This algebraic structure has formal similarities with Boolean alge-
bra, which provides the semantics of classical propositional logic. In light of these similarities,
Birkhoff and von Neumann suggested that the lattice of all propositions associated with a
quantum system must provide the semantic foundation for a quantum—mechanical, proposi-
tional calculus of logic; it is this particular calculus which was christened ‘quantum logic.” In
the words of Beltrametti et al. [6]:

Roughly, the starting question is whether the propositions of a quantum system
can be associated with, or can be interpreted as, sentences of a language (or propo-
sitional calculus) and which rules this language inherits from the ordered structure
of propositions. In raising this question one has in mind the fact that when the
physical system is classical its propositions form a Boolean algebra, and Boolean
algebras are the algebraic models of the calculus of classical logic. Thus, the ques-
tion above can also be phrased as follows: when a Boolean algebra is relaxed into
an orthomodular nondistributive lattice, which logic is it the model of? “Quantum
logic” is the name that designates the answer, but there are several views about the
content of this name.

The precise syntax and applicability of quantum logic has been debated for a very long
time and is still an active area of research. The fact that there is currently no commonly agreed
syntax for quantum propositions limits the applicability of quantum logic to specific problems.
But one should remember that the emphasis in quantum logic is placed not on syntax, not on
applications, but on semantics.

Let it be made clear at the outset that the subject of quantum logic is more usually treated as
part of a programme to understand quantum theory in depth. We have the occasion to present
this topic here, since it is likely to be of some wider interest.

3.1 Motivation for Quantum Logic

As we have seen in Section 2.2, the formalism of quantum mechanics provides us with a means
of predicting the possible outcomes of a measurement on a quantum system. These predictions
have an associated probability of materialising; if an actual measurement is made, only one of
these predictions will turn out to be correct. A quantum—mechanical proposition is just such



a prediction; quantum logic is the logic of these propositions. Birkhoff and von Neumann [8]
explain this as follows:

1t is clear that an “observation” of a physical system S can be described gen-
erally as a writing down of the readings from various compatible measurements.
Thus if the measurements are denoted by the symbols uy,...,u,, then an observa-
tion of § amounts to specitfying numbers x1,...,x, corresponding to the different
M-

It follows that the most general form of a prediction concerning S is that the
point (x1,...,x,) determined by actually measuring u1,...,u,, will lie in a subset
S of (xi,...,x,)—space. Hence if we call the (x,...,x,)—spaces associated with
S, its “observation—spaces,” we may call the subsets of the observation—spaces
associated with any physical system S, the “experimental propositions” concerning
S.

Quantum logic allows us to reason about measurements by defining logical connectives
for quantum—mechanical propositions. In terms of the Hilbert—space formalism, a quantum—
mechanical proposition is simply an observable which admits two possible values (0 and 1).

The literature on the subject is generally concerned with the semantics of quantum logic
(see e.g. [6, 8, 11, 21, 30, 35, 38, 12]). We will proceed to discuss the semantics of quantum
logic after explaining the connection between propositional logic and the theory of lattices.
Our treatment is basic, and we provide no proofs; mathematical rigour is not our priority in
this article.

3.2 Boolean Algebra

In formal logic, a proposition is an assertion which has a definite truth value (either “true” or
“false”). The calculus of propositional logic allows to relate propositions using connectives
such as ‘and’, ‘or’ and ’not’. Each connective expresses a logical operation; for the connec-
tives just mentioned, the operations are, respectively, conjunction, disjunction and negation. It
was George Boole who realised that logical operations are amenable to an algebraic treatment,
and that they obey similar laws to set—theoretic operations [17]. He extracted the algebraic
laws for these operations and came up with what is now known as ‘Boolean algebra.” Boolean
algebra is thus the mathematical structure common to the algebra of sets and the algebra of
propositions. The formal definition of a Boolean algebra is given below.

Definition 1 (from [17]) 4 Boolean algebra (B;\,V,—,0,1) is a set B, together with oper-
ations on the set which satisfy certain laws. We will denote the operations by ‘N°, V', and
‘=" and they will be called ‘meet’, ‘join’ and ‘complement’ respectively. There are two dis-
tinguished and distinct elements of B, denoted by 0 and 1 that are subject to the following
laws.

Idempotence: aNa=a,and aV a = a.

Complement laws: aV —a=1,aN—a=0, and ~—a = a.

Commutativity: aNb=bAa,and avVb=>bV a.

Associativity: aN(bANc) = (aANb)Nc,and aV (bV )= (aVb)Ve.
Distributivity: a\ (bV c¢) = (aAb)V (aNc),and aV (bAc)= (aVb)A(aVc).
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6. Propertyof'l: aNl =a.
7. Property of 0: aVv 0 = a.
8. De Morgan’s laws: —(a Nb) = —a\/ —b, and —(a\V b) = —a A\ —b.

If we were to identify the Boolean operations, meet, join and complement with the set—
theoretic operations intersection ‘1, union ‘N’ and complement ““’, we would find that the
above definition just gives the laws of set theory, assuming B is the set of all subsets of a given
set U. But the above definition also embodies the laws of propositional logic, which is evident
if we identify B with the set of all equivalence classes of propositions [17].

A Boolean algebra is actually a special case of a more general algebraic structure, known
as a lattice. In particular, a Boolean algebra is a complemented distributive lattice, defined as
follows:

Definition 2 (from [17]) 4 complemented distributive lattice is a partially ordered set (P,<)
that satisfies the following conditions:

1. Each pair of elements of P has a least upper bound, denoted aV b, and a greatest lower
bound, denoted a N\ b.

2. (P,<) has a top value, denoted 1, and a bottom value, denoted 0. The top value is defined
as the element c € P which satisfies ¢ > a for all a € P. Similarly, the bottom value is the
element b € P for which b < a forall a € P.

3. Distributivity holds in P, i.e. for any a,b,c € P, aN(bVc)= (aANb)V (aNc), and
aV(bNc)=(aVb)A(aVec).

4. Every element in P has a complement.

Theorem 1 (from [17]) Every complemented distributive lattice is a Boolean algebra under
the operations of meet, join and complement and with the distinguished elements 0 and 1.
Conversely, every Boolean algebra is a complemented distributive lattice under the partial
order that is defined by

a< bifandonlyifa=aNb.

The purpose of presenting these mathematical facts here is to demonstrate the connection
between logic and set theory. In order to understand Birkhoff and von Neumann’s work on
quantum logic, one must be aware of the algebraic structure of classical propositional logic.

3.3 The Structure of Quantum—Mechanical Propositions
Birkhoff and von Neumann describe their motivation and main result as follows [8]:

The object of the present paper is to discover what logical structure one may
hope to find in physical theories which, like quantum mechanics, do not conform to
classical logic. Our main conclusion, based on admittedly heuristic arguments, is
that one can reasonably expect to find a calculus of propositions which is formally
indistinguishable from the calculus of linear subspaces with respect to set products,
linear sums, and orthogonal complements—and resembles the usual calculus of
propositions with respect to and, or and not.



As mentioned earlier, a quantum—mechanical proposition corresponds to an observable
with two possible values. As discussed in Section 2.1, an observable is described by a projec-
tion operator!, or projector. Therefore, every proposition about a given quantum system with
state space # has an associated projector. What is interesting is that the set of all projectors
P(H) on H is actually a lattice. We will briefly list the characteristics of this structure here
(see Beltrametti et al. [6] for details). First, the following definitions are in order.

Definition 3 (from [30]) 4 lattice L is said to be orthocomplemented if it is provided with
an orthocomplementation, that is to say, a mapping of L onto L which to each element b € L
brings into correspondence an element denoted as b' € L, such that:

1.VbeL:(b)=b

2.VbeL:bAbV =0,and bV =1

3. b<c=d <V
Definition 4 (from [6]) A lattice L is called G—orthocomplete when it is orthocomplemented
and there exists in L the join of every countable orthogonal subset of L. Furthermore, L

is called orthomodular if, in addition to being G—orthocomplete, it satisfies the condition:
Va,pbeB:a<b=b=a+(b—a).

Definition 5 (from [6]) A lattice L is complete if the meet and join of any subset of L exist.

Definition 6 (from [6]) Let L be a lattice. The elements a,b,c € L form a distributive triple if
1. an(bVc)=(anb)V(aNc)
2. aV(bNc)=(aVb)N(aVc)

with the other four equalities being obtained by cyclical permutation of a, b and c.
Definition 7 (from [6]) A lattice L is distributive if every triple of elements in L is distributive.
Theorem 2 (from [6]) Any distributive lattice is orthomodular.

As mentioned in [6], distributivity is a natural framework for describing classical mechanics,
while orthomodularity is the corresponding framework for quantum mechanics.
The lattice P(#) of projectors on a state space # has the following characteristics:

e A projection operator corresponds to a closed subspace of #, and P(H) is the set of all
closed subspaces of .

e P(#H) is partially ordered by set-theoretic inclusion (denoted C).
e P(H) is a complete lattice with a meet and a join.

e The greatest element of P(# ) is the whole space #, and the least element of P(#) is
the set consisting only of the zero vector.

e P(#) is an orthocomplemented lattice.
e P(H) is orthomodular.

'Not all observables in quantum mechanics are represented by projection operators, but we have restricted our
discussion to those which are (see Section 2.2).



e P(#) is nondistributive.

e P(#H) is atomic and has the so—called covering property. 1t is also separable. For an
explanation of these terms, see [6].

o P(#H) is modular only if # is finite—dimensional. That is why P(#) is more generally
referred to as quasi—modular. Note that there is a subtle difference between modularity
and orthomodularity.

The discovery of the structure of P(# ) is an important result, as one can reconstruct all
the ingredients of the Hilbert—space formalism (states, transformations and observables) using
only the properties of quantum—mechanical propositions. In [38], Wilce observes that:

From the single premise that the "experimental propositions" associated with
a physical system are encoded by projections in the way indicated above, one can
reconstruct the rest of the formal apparatus of quantum mechanics. The first step,
of course, is Gleason’s theorem, which tells us that probability measures on P(H)
correspond to density operators. There remains to recover, e.g., the representation
of "observables" by self-adjoint operators, and the dynamics (unitary evolution).
The former can be recovered with the help of the Spectral theorem and the latter
with the aid of a deep theorem of E. Wigner on the projective representation of
groups. [...] The point to bear in mind is that, once the quantum-Ilogical skeleton
P(H) is in place, the remaining statistical and dynamical apparatus of quantum
mechanics is essentially fixed. In this sense, then, quantum mechanics — or, at
any rate, its mathematical framework — reduces to quantum logic and its attendant
probability theory.

In other words, quantum logic allows us to define the mathematical framework of quantum
mechanics on a more abstract footing.

It is always interesting to find an underlying mathematical relationship between seemingly
unrelated things; in the case of quantum logic, an investigation into the mathematical struc-
ture of quantum mechanics has revealed the possibility of greatly generalizing propositional
logic. We have only attempted to scratch the surface of this vast and complicated subject here;
however, we have included numerous references for the more advanced reader.

Bibliographic Notes. There are several good textbooks on quantum logic; of these we have
selected and recommend the books by Piron [30], Beltrametti and Cassinelli [6], and Mittel-
staedt [21]. Piron’s book attempts to unify the mathematical framework of quantum mechanics
with that of classical mechanics, and it uses the hidden—variables interpretation of quantum
theory. In their book, Beltrametti and Cassinelli provide a comprehensive presentation of the
subject, introducing first the Hilbert—space formalism and then dealing with the relevant al-
gebraic stuctures in depth; they also describe how the whole formalism may be reconstructed
using only the results of quantum logic. Mittelstaedt’s book is quite readable, and is compa-
rable to Piron’s in terms of coverage. Survey articles of quantum logic include [11], by Dalla
Chiara and Giuntini, also [35], by Svozil, and [38], by Wilce. The book [12] is a collection
of articles on a particular variant, known as operational quantum logic. The philosopher Hans
Reichenbach designed a simple, three—valued quantum logic which appeals to one’s intuition
about measurement [31]; his exposition of the philosophical aspects of quantum theory is very
readable and informative.



4 Logics for Quantum Information Systems

The increased interest in quantum computation and quantum information in recent years has
made quantum logic very relevant today. Ever since research in quantum logic was initiated
by Birkhoff and von Neumann, physicists were constantly at odds over what its precise form
should be. As we saw in the previous section, the emphasis was mostly put on the seman-
tics of quantum logic — in particular, on the mathematical structures that underlie quantum
theory. What is needed today is a means of reasoning formally about systems with quantum—
mechanical components and procedures, namely, a specialized logic with a formal syntax for
describing quantum algorithms, quantum protocols, and their properties. In order to fulfil this
need, one must design a suitable logic using the top—down approach, rather than starting from
low—level algebraic structures and their properties. In the words of [19]:

1t is to be expected that the lattice approach to quantum logic will play a sim-
ilar role to the one played by modal algebras in modal logic, by Heyting algebras
in intuitionistic logic, by Boolean algebras in classical logic, etc. But, as in those
cases, the algebraic approach is not the right source of inspiration for discover-
ing the linguistic ingredients of the envisaged logic. For instance, modal algebras
appeared much later than Kripke structures, well after the modal language was
widely accepted.

P. Mateus and A. Sernadas [20, 19], and also R. van der Meyden and M. Patra [36, 37, 28,
27], are among those who have taken up this challenge. Their approaches are fundamentally
different to the one of Birkhoff and von Neumann; both pairs of authors have designed quantum
logics which are extensions of probabilistic logic.

Mateus and Sernadas have used the exogenous approach to design a logic for reasoning
about quantum systems. This means that they have kept intact the classical model of proposi-
tional logic as the basis for their logic and simply augmented it to account for the probabilism
inherent in quantum mechanics; in particular, the semantics of their logic is such that the mean-
ing of a quantum proposition is given by a superposition of the meanings of classical proposi-
tions. So, instead of building their logic atop the algebraic structures of quantum mechanics,
Mateus and Sernadas have used models of propositional logic as their starting point. Their
work is particularly inspired by the semantics of probabilistic logic, as given in [14, 24]. The
name of the logic they have proposed is “Exogenous Quantum Propositional Logic” (EQPL).
A more powerful version of the logic, which allows one to describe the dynamics of quantum
systems, is “Dynamic Exogenous Quantum Propositional Logic” (DEQPL).

Van der Meyden and Patra have focused on adapting the probabilistic logic in [14] to
quantum systems, and they have come up with a logic for knowledge and time in quantum
systems [36], and a logic for probability in quantum systems [37]. We will only consider the
former of the two logics [36] here.

4.1 Exogenous Quantum Propositional Logic (EQPL)

EQPL [20, 19] is designed to allow one to write assertions about quantum systems consisting
of a finite number of qubits. The constructs of the logic allow one to reason about a wide range
of systems, ranging from entangled pairs of qubits to whole quantum cryptographic protocols.
EQPL only allows one to reason about quantum states and measurements; the extended version
of the logic, DEQPL, can be used to write formulae which include quantum operators.
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A quantum system is described in EQPL by a finite set of propositional constants,
P = {pr | k € N}. Each propositional constant p; corresponds to a single qubit in the sys-
tem under consideration. We define a set V' of so—called classical valuations on P. A clas-
sical valuation is just a function which attaches a truth value to a propositional constant, so
V={v|v:P~ {0,1}}. Classical valuations give meaning to “classical formulae” which are
used in EQPL. The formal syntax of classical formulae is given in BNF below.

du=pi| ()| (d=0) (Classical formulae)

In practice, of course, classical formulae in EQPL will also include other Boolean connectives,
such as ‘and’ (A), and ‘or’ (V). Classical formulae have their usual meaning from propositional
logic.

The full language of EQPL includes general formulae, classical formulae, real terms and
complex terms. The syntax of the full language is defined as follows:

yu=¢ | (<o) [ (S]0P=a) [ (By) | (y3V) (Formulae)
tu=r[(JO) [ (Jo2]01) [ (1+1) | () | Re(w) | Im(u) [ arg(u) | [lu]  (Real terms)
un=(t+it) | texp(it) | u | (u+u) | (uu) (Complex terms)

In the above, » denotes a real number, and i = /—1.
The most important ingredients of the logic are (see [20, 19] for the formal definitions):

[S]OW:u) Quantum modality; this is for making assertions about qubits.

(

(By) Quantum “negation.”
(y3y) Quantum “implication.”
(

) gives the probability of getting an outcome for which ¢ holds, when a measurement is
made.

(fd2]d1) gives the probability of getting an outcome for which ¢ holds, given that ¢; holds,
when we observe the quantum system.

A very simple example of the use of the logic is the following EQPL specification, which
describes the state of a two—qubit system in the entangled state %(\O@ +]11)).

<[po,p1}<> (P01 . ((pa) A (o) é)

In this specification, pg and p; are the propositional constants corresponding to the two qubits
in the system in question. Obviously, this particular system is uninteresting, but it serves to
illustrate EQPL’s syntax. The specification entails the following formulae:

(fpo) = % i.e. “the probability that, the outcome of measuring the first qubit is the truth value
1,is 5.7

(fpilpo) =1 i.e. “the probability that, the outcome of measuring the second qubit is the truth
value 1, given that the outcome of measuring the first qubit was the truth value 1, is 1.

Dynamic EQPL (or DEQPL) introduces means of reasoning about state transitions of a
quantum system. It adds to the language of EQPL a number of unitary quantum operators,
as well as notation for projectors. Dynamic EQPL has enough expressive power to describe
quantum protocols, as demonstrated in [20] for the BB84 quantum cryptographic protocol
[26, 23].
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4.2 A Logic for Knowledge and Time in Quantum Systems

R. van der Meyden and M. Patra have proposed a modal logic for knowledge and time in
quantum protocols [36]. They recognise the fact that, in the literature on quantum computation
and information, epistemic locutions of the form

“ Alice knows x. ”

are frequently encountered; the logical framework which they propose is essentially an attempt
to make such informal language precise. Their ultimate objective is to lay the foundations for
“epistemic analysis” of quantum cryptographic protocols, and related schemes, using logical
methods. Here, we will state the syntax of this “KT” quantum logic and show how it has been
used to specify certain properties of the B92 protocol for quantum key distribution.

The KT quantum logic involves formulas over a set of uninterpreted propositions, Prop. A
formula in the logic may be a proposition, a conjunction or negation of formulae, or one of the
following:

e the form U@, which retains the usual temporal meaning (“always, formula @ holds”);
e the form init(@; ), which is true if @; holds in the initial state of a protocol;

e the form K} (¢ ), which means “agent i knows, given her classical bits and observations,
that @ holds in the current state;

e the form K7 (¢y), which means “agent i knows, given a set of qubits in her possession,
that @, holds in the current state.

So, the syntax of formulae, ®, in the quantum logic is given by the following grammar:

Pu=p @ | @|OAQ|—@ | O | init(@) | K (@) | K (@)

where p €Prop. The concept of “knowledge” has two variations in the logic, since it depends
on what information is used by a particular agent to decide her actions. There is a concept of
“classical knowledge,” which is obtained from only classical bits, and a concept of “quantum
knowledge,” which represents information which can be inferred from a finite set of given
quantum states.

In order to define a property using this logic, a model of the protocol under considera-
tion must be built. The logic assumes that protocols are described as qubit message passing
environments, which are defined as follows (we have modified the original definition slightly):

Definition 8 A4 qubit message passing environment is an abstract model of the computational
setting in a quantum protocol, involving agents and channels for synchronous communication.
1t is defined as a tuple

(n,S,1,Act)

where n is the number of agents involved in the system, S = 87 X S€ is the set of all states that
occur in the system, 1 is the initial state and Act is the set of actions performed by the various
agents.

The global state S is partitioned into a set of classical states, S¢, and a set of quantum states,
S4. Clearly S is a subset of the Hilbert space H of dimension 2V, the vector space inhabited by
N qubits. The set of classical states consists of elements of the form s¢ = (var,loc,chan,res),
which include
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e classical bit assignments, var(i) : Var; — {0, 1} (here, Var; is the set of variable names
belonging to agent 1).

e qubit location assignments, loc : [0, N] — [0,n]. The value of loc(x) is the name of the
agent to which x is attached.

e channel value assignments, chan : [1..n)% —Msg, where Msg is a set of classical messages.
If chan(i,j) = m in a particular state, this means that message m €Msg has just been
transmitted from agent 7 to agent ;.

e measurement result assignments. If res(i) = (M?,m;) in a particular state, it means that
the measurement operator M’ has been applied to the quantum states in S¢, producing as
a classical outcome, the value m;.

It is instructive to show how the logic can be used to describe certain properties of the B92
protocol for quantum key distribution [7] formally. The B92 protocol is listed in Figure 1, but
the reader should consult one of the many references on quantum cryptography if he or she is
unfamiliar with the technique.

Van der Meyden and Patra generally treat protocols as functions P pertaining to a particular
environment.

Definition 9 A4 run r : N — S describes a potential evolution of the system, with r(m) repre-
senting the global state of the system at time m.

Definition 10 A protocol is a system comprised of specific sets of runs, which are generated
by various agents engaging in a particular pattern of behaviour. For agent i, a protocol is
defined as a function P : O — Act;, where O is the set of all observations the agent has
made, and Act; is the set of actions performed by the agent.

The B92 protocol satisfies the following formulae of KT quantum logic:

O =1=k(a) Nkg(a)) i.e. “In successful runs, Alice and Bob come to ‘classically know’
bit a.”

O(b=1= —kf(a)) i.e. “Eve never comes to know bit a based on ‘classical observations’
alone.”

O(b=1=kk(a)) ie. “If Eve could perform repeatable measurements on the qubit inter-
cepted, she could come to learn the value of a.”

5 Concluding Remarks

Our goal in this brief survey has been primarily to stimulate interest and provoke thought;
we have only attempted to introduce the reader to the interesting issues at the intersection,
so to speak, of logic and quantum theory. We have introduced the subject of quantum logic
and given a brief account of the literature. We have also given a summary of recent work on
developing logics for quantum information systems.

It is hoped that an understanding of quantum logic will be useful in the quest to understand
and model the structure of Nature’s laws, and that computer scientists will be able, in their own
way, to contribute to this adventure.

13



The B92 protocol [7] allows two users, Alice and Bob, to establish a common secret key, using
a single quantum channel and a classical communication medium, such as a telephone connec-
tion. The idea is to prevent an eavesdropper (“Eve”) from obtaining the value of the key, which
is a random binary sequence encoded using qubits; these qubits are transmitted over the quantum
channel, and Bob measures each in order to recover the encoded bit values. According to quantum
theory, only a compatible measurement is guaranteed to recover the correct bit value. If an incom-
patible measurement is made (i.e. a measurement with respect to a different basis of the qubit’s
state space), then the correct bit will only be obtained with probability 0.5. The first part of the
protocol, which involves Alice sending to Bob a sequence of qubits over the quantum channel, is
as follows:

1. Initial State: Alice has a single qubit, and a classical bit, a. Bob has two classical bits,
a' and b. The bases for the set of quantum states S7 in the system are B = {|0),|1)} and

M ={[+),[-)}
2. Alice flips her bit, a.
e If a = 0, she prepares her qubit in state |0).
e If a = 1, she prepares her qubit in state |+).
3. Alice transmits her qubit to Bob.
4. Bob flips his bit o'

e If d’ = 0, he measures the qubit with basis H.
e Ifd’ = 1, he measures the qubit with basis .

5. If the result of the measurement is either |0) or |+), Bob sets » = 0. Otherwise, he sets
b=1.

6. Bob sends a classical message to Alice stating the value of 5.

7. The run of the protocol is deemed successful only if » = 1.

We write P for the eavesdropping version of B92, in environment ‘E, if it prescribes the above
behaviour for Alice and Bob, and an eavesdropper, Eve, receives the qubit transmitted as well as
Bob’s classical message. For details, consult [36]. We use the notation & (a) =K' (a =0) VK (a =
1), where x € {c,q}, to define the properties of P.

Figure 1: A simplified model of the B92 protocol, as used by Van der Meyden and Patra to define
the protocol’s properties in the quantum logic.
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