
Simulating and Compiling Code for the
Sequential Quantum Random Access Machine

Rajagopal Nagarajan
Department of Computer Science

University of Warwick
Coventry CV4 7AL

United Kingdom
biju@dcs.warwick.ac.uk

Nikolaos Papanikolaou
Department of Computer Science

University of Warwick
Coventry CV4 7AL

United Kingdom
nikos@dcs.warwick.ac.uk

David Williams
School of Informatics

City University
London EC1V 0HB

United Kingdom
david@david-williams.info

Abstract
We present the SQRAM architecture for quantum computing,
which is based on Knill’s QRAM model. We detail a suitable in-
struction set, which implements a universal set of quantum gates,
and demonstrate the operation of the SQRAM with Deutsch’s quan-
tum algorithm.

The compilation of high-level quantum programs for the
SQRAM machine is considered; we present templates for quantum
assembly code and a method for decomposing matrices for com-
plex quantum operations. The SQRAM simulator and compiler are
discussed, along with directions for future work.

1. Introduction
The rapidly growing field of quantum computation and quantum
information is still in its infancy, largely due to the lack of a sub-
stantial, practical quantum computing device. However, the theo-
retical potential of such devices is widely acknowledged. Presently,
the only realistic avenue of investigation for an interested computer
scientist is the use of quantum computer simulators.

Owing to the large state spaces of quantum–mechanical sys-
tems, a complete simulator of subatomic phenomena cannot be
implemented efficiently on a classical computer. Nobel laureate
Richard Feynman observed in 1985 that [6]:

“. . . if a description of an isolated part of Nature withN
particles requires a general function ofN variables and if
a computer simulates this by actually computing or storing
this function then doubling the size of Nature (N → 2N)
would require an exponentially explosive growth in the size
of the simulating computer.”

Focusing on quantum mechanics in particular, Feynman points
out that:

“. . . the full description of quantum mechanics for a
large system withR particles is given by a function
ψ(x1, x2, . . . , xR, t) which we call the amplitude to find the
particles atx1, x2, . . . , xR and therefore, because it has too
many variables, itcannot be simulated with a normal com-
puter with a number of elements proportional toR [. . .].”

Our goals in this paper are substantially more modest; we are
interested in local quantum computation on a finite number of
quantum bits (qubits). In particular, we will discuss the design of
a hybrid classical–quantum computer architecture, which we will
call the Sequential Quantum Random Access Memory machine, or
SQRAM for short. The SQRAM design is based on Knill’s QRAM

model [8]. In addition, we will define an instruction set for ahypo-
thetical implementation of the SQRAM, and illustrate the operation
of such a device when running Deutsch’s algorithm for determining
the balance of a boolean function [9]. We have implemented a sim-
ulator of the SQRAM machine using the OpenQubit library [12].

In light of recent proposals for quantum programming lan-
guages, including QPL [13], QCL [10], CQP [7] and qSpec [11],
we feel it is suitable to consider compilation of high–levelquantum
programs; we discuss techniques for this and present a compiler we
have developed for a subset of QPL.

We begin with a summary of basic quantum computing con-
cepts. We will then proceed to describe the proposed SQRAM ar-
chitecture and instruction set; this is followed by a walkthrough of
Deutsch’s algorithm, as implemented on the SQRAM. Finally,we
will turn to compilation of high–level quantum programs in QPL, a
functional quantum programming language due to Selinger.

2. Related Work
Currently several quantum simulators are available, including tools
for analysing quantum circuits and interpreters for quantum pro-
gramming languages [3, 10].

With the notable exception of a joint Columbia and MIT
project [14], there has been little work to date on the development
of a quantum computer architecture which is realisable using cur-
rent technology. In [14], a multi-layer framework is defined, which
models different levels of abstraction for a quantum computer sim-
ulator; however, the authors account for specific aspects ofphysical
implementation; on the contrary, we simply rely on the hypothesis
that the proposed system architecture may be implemented with
present–day hardware, and do not concern ourselves with details of
the physics.

3. Quantum Computing Fundamentals
A few preliminaries are in order; we are assuming no prior knowl-
edge of quantum computing.

A quantum bit or qubit is a physical system which has two basis
states, conventionally written|0〉 and |1〉, corresponding to one-
bit classical values. These could be, for example, spin states of a
particle or polarization states of a photon, but we do not consider
physical details. According to quantum theory, a general state of a
quantum system is asuperposition or linear combination of basis
states. A qubit has stateα|0〉 + β|1〉, whereα andβ are complex
numbers such that|α|2 + |β|2 = 1; states which differ only by
a (complex) scalar factor with modulus1 are indistinguishable.
States can be represented by column vectors:

ˆ

α
β

˜

= α|0〉 + β|1〉.
Formally, a quantum state is a unit vector in a Hilbert space,i.e.

a complex vector space equipped with an inner product satisfying
certain axioms.

The basis{|0〉, |1〉} is known as thestandard basis. Other bases
are sometimes of interest, especially thediagonal (or dual, or
Hadamard) basis consisting of the vectors

|+〉 = 1√
2
(|0〉+ |1〉) and |−〉 = 1√

2
(|0〉 − |1〉)

Evolution of a closed quantum system can be described by a
unitary transformation. If the state of a qubit is represented by a
column vector then a unitary transformationU can be represented
by a complex-valued matrix(uij) such thatU−1 = U∗, whereU∗

is the conjugate-transpose ofU (i.e. elementij of U∗ is ūji). U
acts by matrix multiplication:

»

α′

β′

–

=

»

u00 u01

u10 u11

– »

α
β

–

A unitary transformation can also be defined by its effect on basis
states, which is extended linearly to the whole space. For example,
theHadamard operator is defined by

|0〉 7→ |+〉 = 1√
2
|0〉+ 1√

2
|1〉

|1〉 7→ |−〉 = 1√
2
|0〉 − 1√

2
|1〉

which corresponds to the matrixH = 1√
2

»

1 1
1 −1

–

. The Pauli

operators, denoted byσ0, σ1, σ2, σ3, are defined by

σ0 =

»

1 0
0 1

–

σ1 =

»

0 1
1 0

–

σ2 =

»

0 −i
i 0

–

σ3 =

»

1 0
0 −1

–

Measurement plays a key role in quantum physics. If a qubit
is in stateα|0〉 + β|1〉 then measuring its value gives the result0
with probability |α|2 (leaving it in state|0〉) and the result1 with
probability |β|2 (leaving it in state|1〉).

For example, if a qubit is in state|+〉 then a measurement (with
respect to the standard basis) gives result0 (and state|0〉) with
probability 1

2
, and result1 (and state|1〉) with probability 1

2
. If a

qubit is in state|0〉 then a measurement gives result0 (and state
|0〉) with probability1.

To go beyond single-qubit systems, we consider tensor prod-
ucts of spaces (in contrast to the cartesian products used inclassi-
cal systems). If spacesU andV have bases{ui} and{vj} then
U ⊗ V has basis{ui ⊗ vj}. In particular, a system consisting
of n qubits has a2n-dimensional space whose standard basis is
|00 . . . 0〉 . . . |11 . . . 1〉. We can now consider measurements of sin-
gle qubits or collective measurements of multiple qubits. For exam-
ple, a2-qubit system has basis|00〉, |01〉, |10〉, |11〉 and a general
state isα|00〉+ β|01〉 + γ|10〉+ δ|11〉 with |α|2 + |β|2 + |γ|2 +
|δ|2 = 1. Measuring the first qubit gives result0 with probability
|α|2+|β|2 (leaving the system in state 1√

|α|2+|β|2
(α|00〉+β|01〉))

and result1 with probability |γ|2 + |δ|2 (leaving the system in
state 1√

|γ|2+|δ|2
(γ|10〉+ δ|11〉)); in each case we renormalize the

state by multiplying by a suitable scalar factor. Measuringboth
qubits simultaneously gives result0 with probability |α|2 (leav-
ing the system in state|00〉), result1 with probability |β|2 (leav-
ing the system in state|01〉) and so on; the association of basis
states|00〉, |01〉, |10〉, |11〉 with results0, 1, 2, 3 is just a conven-
tional choice. The power of quantum computing, in an algorith-
mic sense, results from calculating with superpositions ofstates;
all of the states in the superposition are transformed simultane-
ously (quantum parallelism) and the effect increases exponentially
with the dimension of the state space. The challenge in quantum

algorithm design is to make measurements which enable this par-
allelism to be exploited; in general this is very difficult.

The controlled not (CNOT) operator on pairs of qubits per-
forms the mapping|00〉 7→ |00〉, |01〉 7→ |01〉, |10〉 7→ |11〉,
|11〉 7→ |10〉, which can be understood as inverting the second
qubit (thetarget) if and only if the first qubit (thecontrol) is set.
The action on general states is obtained by linearity.

Systems of two or more qubits may be inentangled states,
meaning that the states of the qubits are correlated. For example,
consider a measurement of the first qubit of the state1√

2
(|00〉 +

|11〉). The result is0 (and the resulting state is|00〉) with proba-
bility 1

2
, or 1 (and the resulting state is|11〉) with probability 1

2
.

In either case, a subsequent measurement of the second qubitgives
a definite, non–probabilistic result which is identical to the result
of the first measurement. This is true even if the entangled qubits
are physically separated. Entanglement illustrates the key differ-
ence between the use of the tensor product (in quantum systems)
and the cartesian product (in classical systems): an entangled state
of two qubits is one which cannot be expressed as a tensor prod-
uct of single-qubit states. The Hadamard andCNOT operators can
be combined to create entangled states:CNOT((H ⊗ I)|00〉) =
1√
2
(|00〉 + |11〉).

4. The SQRAM Architecture
In this section we propose a system architecture for a hybrid
classical–quantum computer, with a conventional classical subsys-
tem (consisting of a CPU, a classical data store and program store)
and a separate quantum–mechanical unit. Such a device, termed
a QRAM machine, was proposed by Knill in [8]. The quantum–
mechanical unit consists of a quantum memory register and a
means of manipulating its contents. We will describe the details of
this architecture, including its operating cycle and instruction set.

4.1 The Classical Component

The CPU contains an Arithmetic–Logic Unit for evaluating classi-
cal expressions, a control unit, and a program counter, which keeps
track of the current point of execution within the program store (the
program store is separate from the data store for simplicity). The
CPU does not contain any registers as all operations are performed
on the data store. The data store operates a stack–based model both
for the evaluation of expressions and for the allocation of variables;
this fits well with the functional programming paradigm and sim-
plifies code generation for the compiler.

Program execution begins with the program counter, local base,
and stack top all cleared to0. An instruction is retrieved from the
location given by the program counter and executed, the process is
then repeated. Most instructions cause the program counterto be
incremented but some (such as jumping and halting instructions)
have different effects (see Table 1 for a listing of the available clas-
sical instructions). Program execution is finished once theprogram
counter goes past the end of the program store.

4.2 The Quantum Component

The quantum subsystem comprises a quantum register and a Quan-
tum Hardware Interface (QHI), which receives instructionsfrom
the CPU and manipulates qubits accordingly. Figure 2 illustrates
the stages of a typical quantum algorithm.

In the first stage, the hardware resets the qubits to the|0〉 state
and then applies some transformation to place them in the desired
initial state. Applying this transformation could be considered to
be part of the computation, but conceptually it helps to consider it
as part of the initialisation. The second stage is where the manip-
ulation of the quantum state actually takes place. After thecom-
putation is complete, the result is measured. Each measuredqubit

Table 1. SQRAM Machine Classical Instruction Set
Instruction Effect

ADD

st← st− 1
DS[st− 1]← DS[st − 1] +DS[st]
pc← pc+ 1

HALT pc← size(PS)

JUMPZ address

st← st− 1
if(DS[st − 1] = 0) :
pc← address

else :
pc← pc+ 1

LOAD offset
DS[st]← DS[lb + offset]
st← st+ 1
pc← pc+ 1

LOADLvalue
DS[st]← value
st← st+ 1
pc← pc+ 1

SAVE offset
st← st− 1
DS[lb + offset]← DS[st]
pc← pc+ 1

SUBTRACT

st← st− 1
DS[st− 1]← DS[st − 1]−DS[st]
pc← pc+ 1

Logic Unit
Arithmetic

Unit
Control

Counter
Program

Central Processing Unit

Key: Data store out of scope

Data store not yet allocated

Data store in use

Q
uantum

 R
egister

Local

Stack

0x0F

Top

Base

0x00

Read/
Write

Program
Store

Instructions

Quantum Component

Results Of Measurements

Operations

Quantum State
Interaction With

Classical Component

Quantum
Hardware
Interface

0x000F

0xFFF0

Local Base

StackTop

0x0000

0xFFFF

Data Store

Figure 1. Design of the SQRAM machine

yields a binary value{0, 1} which is returned to the CPU and can
be used for conditional control purposes. The final stage checks the
validity of the result and performs the computation again ifneces-
sary. Incorrect results may occur either due to problems with the
hardware, allowing quantum states to become damaged, or dueto
the algorithm being probabilistic by nature and hence not always
producing the desired result.

As was explained in Section 3, the state is transformed by
applying a sequence of operations to it; these may operate onan
arbitrary number of qubits and the only restriction is that they
must be unitary. While this is accurate from a theoretical point of

Repeat if Necessary

and Loading
Initialisation Quantum State

Evolution
Measurement

of State
Checking

Figure 2. SQRAM Operating Cycle

Table 2. SQRAM Machine Quantum Instruction Set
Instruction Effect

AQBIT
qst← qst+ 1
pc← pc+ 1

CNOT tar
cont inv

QR[tar]← tar × cnot(cont, inv, . . .)
pc← pc+ 1

GATE tar
a b c d

QR[tar]← tar × gate(a, b, c, d)
pc← pc+ 1

HDMD tar
QR[tar]← tar × gate(1√

2
, 1√

2
, 1√

2
,− 1√

2
)

pc← pc+ 1

MSRE tar
DS[st]← measure(tar)
st← st+ 1
pc← pc+ 1

PHASE tar
QR[tar]← tar × gate(1,0, 0, i)
pc← pc+ 1

PI tar QR[tar]← tar × gate(1,0, 0, eiπ/4)
pc← pc+ 1

view it is at the present time very difficult to implement arbitrary
operations on arbitrary numbers of qubits. Fortunately it is known
that there is a small set of operations (actually an infinite number
of such sets) which is universal in that it is able toapproximate an
arbitrary operation to any given accuracy [9].

We now introduce the operations which make up one of these
universal sets (known as thestandard set). The first operation is
the Controlled–NOT (CNOT), which we described previously.This
operation can be combined with arbitrary single qubit operations to
exactly implement any quantum operation on an arbitrary number
of qubits.

The universal set also includesapproximate arbitrary single
qubit operations. Within the standard set these are the Hadamard
Operator (denoted byH), the Phase Operator (S) and theπ/8 op-
erator. We use the standard universal set as the basis for theinstruc-
tion set of the SQRAM, along with instructions for measurement
and initialisation, and a classical set of instructions forcontrol pur-
poses. We also include an instruction for performing arbitrary op-
erations on single qubits. The ‘quantum part’ of the instruction set
is summarised in Table 2.

4.3 Deutsch’s Algorithm on the SQRAM

We now present an example of a program written for the SQRAM
machine. We will be using a revised and improved version of
Deutsch’s algorithm as given in [5]; this paper should be consulted
for further details of the algorithm, as the description given here
will be necessarily brief.

We are presented with a black–box which performs some func-
tion f(x) on a single bitx. There are four possible functions
which f(x) could perform, these beingf(x) = 0, f(x) = 1,
f(x) = NOT (x), andf(x) = x. Of these the first two are called
constant because they always give the same result, while the sec-
ond two are calledbalanced because half the inputs result in0 and
half result in1. The problem is to determine, using as few function
evaluations as possible, whetherf(x) is constant or balanced.

If done classically, this requires two function evaluations, one
with an input of0 and the other with an input of1, and a comparison
of the results. However, using Deutsch’s algorithm on a quantum

computer it is possible to use just one function evaluation.Note
that if the function is constant thenf(0) ⊕ f(1) = 0, while if it
is balanced thenf(0) ⊕ f(1) = 1. Using the circuit in Figure 3
it is possible to evaluatef(0) ⊕ f(1) with out ever finding out the
values off(0) andf(1).

H

H H|0>

|1>

f(x)

Figure 3. A Circuit Implementing Deutsch’s Algorithm.

To illustrate this as SQRAM assembly code we choose a func-
tion to test; we will work with the NOT gate as it is straightforward.
The NOT gate is balanced, so the result of evaluatingf(0) ⊕ f(1)
should be1. The code to be executed on the SQRAM machine is
given in Algorithm 4.3.

Compared to the circuit representation the code requires addi-
tional initialisation as all qubits are automatically initialised to|0〉
where as the second qubit needs to begin in state|1〉; a NOT oper-
ation resolves this. Note that the NOT operation has been realised
using the GATE instruction, it could equally well be done using a
CNOT with no controls.

The example mostly illustrates quantum instructions as theclas-
sical ones should be familiar to most readers. The only classical in-
struction used is SAVE, which stores the result of the measurement
at the top of the classical stack. Further code could conditionally
jump based on this value to give feedback to the user.

4.4 Simulating the SQRAM

In order to evaluate and analyse the design of the SQRAM, we have
developed a software simulator. Simulation of quantum mechanical
systems is known to be a highly complex problem (as observed
by Richard Feynman in [6]), and so our simulator is restricted to
a relatively small number of qubits. However, there are several
known quantum algorithms which only make use of a few qubits;
we have succeeded in modelling these.

The simulator makes use of the ‘OpenQubit’ library [12]. This
is an Open Source library designed to be used in projects involving
the modelling of quantum systems. The library (written in C++)
provides a class to represent the state of a system (by storing a po-
tentially large, complex vector) and a set of classes representing
valid transformations which can be applied to that state. Our simu-
lator implements the classical component and fetch–execute cycle
of the SQRAM machine directly and also makes use of the Open-
Qubit library to implement the quantum part. As far as possible the
architecture of the simulated SQRAM machine matches that pre-
sented earlier in Figure 1, and the instruction set also matches the
one specified.

One key difference between the simulator and the design pre-
sented in Figure 1 is an additional layer of abstraction placed be-
tween the quantum register and the processor. The simulatorpro-
vides a ‘universe’ of qubits and the quantum register is actually a
collection of references to qubits within the universe, as shown in
Figure 5. It is designed in this way so as to simplify the process of
transmitting qubits from one machine to another; it is just acase of
passing references. Although the issue of such communication is
not discussed here it is a topic for future work.

We provide in Appendix A an example of the SQRAM machine
simulator performing a simulation of Deutsch’s algorithm,using
the bytecode presented in Algorithm 4.3. The algorithm is testing
the NOT function, so we expect it to determine that the function
is balanced. We have broken the output into sections which are
numbered to allow them to be referenced from the text.

AQBIT ;allocate initial qubits
AQBIT
GATE 0x01 0.0 0.0

1.0 0.0 1.0 0.0
0.0 0.0

;initialise second qubit to 1

HDMD 0x00 ;apply Hadamards
HDMD 0x01
GATE 0x00 0.0 0.0

1.0 0.0 1.0 0.0
0.0 0.0

;NOT gate is our test function

CNOT 0x01 1 0 0 ;apply the CNOT gate
HDMD 0x00 ;the last Hadamard
MSRE 0x00 ;measure the result
SAVE 0x00 ;save to address 0x00 for later

Figure 4. SQRAM Program Implementing Deutsch’s Algorithm

q4q3q2q1q0 qnn−1qn−2q

Universe of Qubits

0x0 0xF0x1 0xE

SQRAM 1

Figure 5. SQRAM machine accessing qubits via references

The simulator begins by creating an instance of the QRAM
class (with three qubits) and initialising it to its starting state (step
1). As always the sum of the probability amplitudes must be1.0.
The program is then read from disk and loaded into the SQRAM
machine (step 2). The machine starts off with all qubits setsto
|0〉, it can optionally output the state of classical memory as well
but we won’t be using that here. Note that the display (step 3)of
the machine state always shows all three qubits even though none
of them have been allocated yet, and even though we will only
be using two of them. Execution of the program begins with the
allocation of two qubits (step 4), a result of two successiveAQBIT
instructions. Qubits are initialised to the|0〉 state.

It can be seen from Figure 3 that the lower qubit needs to startin
state|1〉 instead. A GATE operation implementing the NOT func-
tion is applied (step 5) to change this. The two Hadamards areap-
plied next (step 6), eventually leaving the system is an equal su-
perposition of the states|000〉,|001〉,|010〉,|011〉. Again remember
that the first qubit is still|0〉 because it has not been allocated.

In (step 7) we apply the test function, which in our case is
the GATE instruction implementing the NOT function. We then
perform a CNOT operation (step 8), conditional on the resultof our
test function. Some of the output is generated by the OpenQubit
library rather than by our simulator, hence the target and control
qubits are referred to as1 and 2 respectively, whereas we have
previously called them0 and1.

The last Hadamard is applied (step 9) which leaves qubit0 in
state|0〉 (as expected). Of course, although we can see the result
by ‘peeking’ into the simulator, in reality we can’t tell until we
perform the measurement. During the measurement the OpenQubit
library generates some more output (step 10), the eventual result
being that the qubit is correctly measured to be1. This indicates
our test function was balanced.

5. Compiling High-Level Languages for the
SQRAM

It is, of course, impractical to write large programs by handusing
the instructions set presented in the previous section as this is a
task which is both time consuming and error prone. The solution in
the field of classical computing has been to develop programming
languages which can be automatically compiled into corresponding
machine code; this is also one of the solutions for quantum com-
puters.

It is by no means the only solution as many theoretical break-
throughs are made by studying the underlying mathematics of
quantum mechanics and another notation known as ‘quantum cir-
cuits’ has also proved popular. However there are several reasons
why there has been a growing interest in the use of quantum pro-
gramming languages.

Perhaps the most important point is that use of a language el-
egantly allows a mixture of classical control structures with quan-
tum operations; this is something which is very difficult to do with
a quantum circuit model. It fits well with the model of computation
used by our SQRAM machine (and by most quantum algorithms) in
which the majority of the operations are classical. A secondadvan-
tage (as in classical programming) is that the generation ofrepeti-
tive code structures is handled automatically by the compiler and it
is able to perform optimisations which would be difficult by hand.
Finally, the programming model is far more intuitive to mostcom-
puter scientists and will greatly ease the development of algorithms.

5.1 Quantum Language Requirements

It is possible to identify a set of properties which a quantumpro-
gramming language should possess in order to maximise the effec-
tiveness of the language. Some of the ideas given have been previ-
ously suggested by other research groups [2, 8, 13] while some are
based on experience.

Classical Characteristics:Many years of research on classical
languages have identified properties such as a clean syntax and
intuitive set of keywords as being important for languages.

Completeness:The language should be universal such that it can
represent all quantum algorithms. This gives it the same ex-
pressive power as the mathematical model or quantum circuit
model.

Expressivity: The language should present the programmer with a
sufficient set of primitives (such as qubits) and constructs(such
as measurements) to allow programs to be constructed easily.

Separability: It should be easy to achieve separation of those
parts of the program which are quantum in nature from those
parts which are classical as this can simplify compilation and
execution of the code.

Hardware Independence:Although in this paper we present the
SQRAM machine as a model of computation it is important
to realise that other models may be developed and a language
should ideally work on these. A language should be kept as gen-
eral as possible perhaps by using the quantum Turing machine
as the target.

Extension of Classical Languages:Much research has been un-
dertaken analysing the advantages of different programming
paradigms and by extending an existing language which uses
one of these we get a language with which programmers are
familiar and which has an existing set of tools. Hence much
unnecessary work can be avoided duplicating features.

QPLTerms P,Q :: = new bit b := 0

| new qbit q := 0

| discard x | b := 0 | b := 1

| q1, . . . , qn∗ = S | skip | P ;Q

| if b then P else Q

| measure q then P else Q

| while b do P

| proc X : Γ→ Γ′{P} in Q

| y1, . . . , ym = X(x1, . . . , xn)

Figure 6. The syntax of Peter Selinger’s QPL.

5.2 Particularities of Quantum Systems Affecting Language
Designs

The inability to clone an unknown quantum state has a direct effect
on the behaviour of statements which involve assignment; these
include direct assignment and passing values to functions.Because
it is not possible to actually copy the value many languages make
use of references and hence have many variables pointing to the
same qubit. Other languages may forbid the direct assignment of
quantum variables.

Although as noted previously it is not possible to assign one
qubit to another it is possible to assign a qubit to a classical bit; this
involves an implicit measurement. Unlike in classical programming
this will modify the variable on the right hand side of the assign-
ment and it is not possible to retrieve the previous value.

It is possible for two qubits identified by separate variable
names to become entangled such that the manipulation of one vari-
able has an effect on the other. There is no analogy to this in clas-
sical programming although it is not so much an issue for the lan-
guage but rather for the programmer who designs the algorithms.

5.3 A Functional Language: QPL

Given the requirements which have been set out there are several
languages which meet them to varying degrees [2, 8, 10]. Our work
focuses on one in particular, Peter Selinger’s QPL [13], dueto its
clean and elegant design, and its suitability for implementation on
the SQRAM machine.

Selinger identifies the static type system as being one of thekey
features of his language as this allows the syntax to enforcecertain
properties of quantum mechanics such as the no–cloning theorem,
by forbidding direct assignment between qubits. As well as the
usual control constructs such as loops and conditional statements
QPL allows the definition of recursive functions. This is useful
when operating over lists and trees which QPL allows to contain
quantum data as well as classical. The syntax of QPL is reproduced
from [13] in Figure 5.3.

5.4 Code Templates for Quantum Operations

Code generation, for our purposes, is the process of producing
bytecode instructions for each of the nodes in the abstract syntax
tree corresponding to a high–level program. We have designed code
templates for the quantum constructs within the QPL language and
have also considered the decomposition of large operations, so they
may be implemented directly in bytecode.

Code templates are used within compilers to provide a set of
byte–code instructions which correspond to a particular construct
in the source program, such as an expression, a loop, or a variable
declaration. We specify code templates for those constructs which

are quantum in nature but do not give details of classical constructs
as these are very similar to existing languages. Specifically, we
cover the declaration of quantum types, the manipulation ofthose
types, and their eventual measurement.

Within QPL a new qubit is declared using a statement such as:

(new qbit q := 0)

This allocates a new qubit, referred to by the variable nameq,
and initialises it to the state|0〉. To implement this we simply use
the AQBIT instruction:

translate[new qbit q:=0] = AQBIT

wheretranslate is a function that specifies a translation of terms in
QPL to SQRAM bytecode.

A transformation is applied to a quantum data type using the
∗ = operator. For example, the built-in unitary transformation U
could be applied toq as follows:

(q *= U)

There are two situations to consider here. FirstlyU might be a
single qubit operation which we wish to implement directly using
the GATE instruction. This becomes:

translation[q *= U] = GATE q U

Alternatively U might be a multi–qubit operation (in which
caseq would need to be a multi–qubit data type), or it might be
a single qubit operation which we wish to decompose into gates
from the universal set of operations. Either way, we move into the
decomposition process which is discussed in Section 5.5.

Measurement is the most complex of the code templates (as-
suming we don’t get involved with decomposition when manipulat-
ing quantum types). QPL performs measurement by the following
statement:

measure q then P else Q

A measurement is performed on the qubitq. If the result of
the measurement is|1〉 then the command corresponding toP is
executed, otherwise the command corresponding toQ is executed.
The code template for this looks as follows:

translation[measure q then Pelse Q] =
MSRE q ;Perform the measurement
JUMPZ ELSE ;If it’s |0〉 then jump to else part
execute P ;Else execute command P
LOADL 0 ;Unconditionally jump to end
JUMPZ END ;by loading 0 and jumping if 0
ELSE: execute Q ;Execute command Q
END:

If the measurement ofq gives a value of1 then the JUMPZ in-
struction is ignored and the program proceeds to executeP before
unconditionally jumping over the code to executeQ. On the other
hand, ifq is measured as0 the first JUMPZ jumps over the execu-
tion of P straight to the point whereQ is executed.

5.5 Decomposition of Operator Matrices

In Section 4.2 we discussed the principle of universality, stating that
any quantum operation can be broken down and implemented in
terms of a small set of universal gates. Hence our SQRAM machine
only provides operations corresponding to these universalgates and
it is the job of the compiler to perform the decomposition. This
decomposition is a complex process and work has been done on it
by a variety of different people and research groups. We bring this
work together to form a complete compilation process and provide
an analysis of its efficiency.

U11 U12 U1n

U21

Un1

U22 U2n

Un2 Unn

Generate a
set of two

level unitary
matrices

implementation by controlled

Generate sequence
of CNOT gates to allow

single qubit operation

Implement controlled
unitary operation with
single qubit operations

and CNOT’s

X

Stage 1Input Stage 2

Stage 3 Stage 4 Output

Generate primitive
operations to

approximate single
qubit operation.

Figure 7. Decomposition of an Arbitrary Unitary Matrix

5.5.1 Overview

Decomposing a matrix into primitive operations is a multistage
process (outlined in Figure 7); each of the stages shown is described
in the following sections. The mathematical proofs for the validity
of each stage of the process are well established and work has
previously been done looking at the optimal number of gates which
can be used to approximate a given unitary matrix. Thereforethis
work focuses on designing algorithms to implement the process and
performing classical efficiency analysis on these algorithms. It is to
our knowledge the first system to implement the complete process
from arbitrary operations to quantum byte–code within a compiler.

A working compiler has been implemented to test the concepts
presented in the following sections but we will not discuss its im-
plementation here. For details of this including design approaches,
examples, and sample output please refer to [15].

5.5.2 Generating Two-Level Unitary Matrices

Two-level unitary matrices are those which act non-trivially on only
2 vector components of the system state; that is ,when the vector is
multiplied by the matrix only two elements are changed as most
elements in the matrix are identity. Such a matrix has a structure as
follows:

Rk =

2

6

6

6

6

6

6

6

6

6

6

6

6

6

6

6

4

. . .
...

...
...

...
...

...
· · · 1 0 0 · · · 0 0 0 · · ·
· · · 0 α 0 · · · 0 γ 0 · · ·
· · · 0 0 1 · · · 0 0 0 · · ·

...
...

...
. . .

...
...

...
· · · 0 0 0 · · · 1 0 0 · · ·
· · · 0 β 0 · · · 0 δ 0 · · ·
· · · 0 0 0 · · · 0 0 1 · · ·

...
...

...
...

...
...

. . .

3

7

7

7

7

7

7

7

7

7

7

7

7

7

7

7

5

(1)

The initial step is to decompose the original matrixU of side
lengths into a sequence of two-level unitary matrices (also of side
length s). The product of the matrices in this sequence must be
equal to the input matrixU , so that applying them to the system in
the correct order has the same effect as applyingU .

Performing this decomposition is not only necessary for thenext
stage, it is also a result in its own right. A description of a technique
for implementing such transformations with beam–splitterdevices
is presented in [16], with the result that simply performingthis
stage could bring arbitrary operations closer to being realisable.

We will not go deeply into the mathematics involved as it
can become reasonably complicated; for a coverage of this see
[16, 15, 9]. It has been observed [9] that such a process will de-
compose the original matrix into at mosts(s−1)

2
two level matrices.

However, no analysis of the efficiency of such an algorithm was
provided and it is a useful result to determine this. In [15] we make

some assumptions about the efficiency of variations and showthe
complexity to be approximatelyΘ(n5). This is clearly not a fast
algorithm, and it should be noted that the previous analysiswas
with respect to the size of the matrix (which is exponential in the
size of the system). Hence the algorithm requires exponential time
overall, but it should also be remembered that it will typically be
operating on small values ofn, corresponding to a small number of
qubits. Also, the difficulty in performing this decomposition makes
it clear that it is necessary to have a quantum byte–code which can
be stored as it too difficult to generate in real time.

5.5.3 Generating Controlled Unitary and CNOT Gates

We obtain from the previous stage a set of two level unitary matri-
ces, for example a matrix of the form:

U =

2

6

4

α 0 0 γ
0 1 0 0
0 0 1 0
β 0 0 δ

3

7

5
(2)

A matrix such as this acts on two components of the system (in
this particular case it acts on|00〉and |11〉), and leaves the other
components unaffected as follows:

2

6

4

|00〉
|01〉
|10〉
|11〉

3

7

5
U−→

2

6

4

α |00〉 + γ |11〉
|01〉
|10〉
β |00〉 + δ |11〉

3

7

5
(3)

We wish to implement this matrix in terms of a controlled
single qubit operation, or Controlled–U gate, but note thata single
qubit operation cannot act on both|00〉 and |11〉 as they differ by
more than one bit. Therefore we use a series of CNOT gates (in
this simple case the series contains just one gate) to swap states
around such that the target states are adjacent to each other. The
Controlled-U is then applied to the one bit which still differs, and
the reverse series of CNOT gates is used to arrange the statesback
to their original position.

To clarify this procedure, the operation given by Equation 2is
implemented by the circuit in Figure 8, whereT is the sub–matrix
of U given by:

T =

»

α γ
β δ

–

(4)

T

Figure 8. Circuit implementing Equation 2.

Note that the CNOT gates are active when the control qubit
is |0〉, rather than the more conventional|1〉. The problem then
is how to generate the series of CNOT gates which rearrange the
computational states in the appropriate way. A solution involving
the use ofGray codes is covered by [9] and a description within the
context of our compiler is provided by [15].

5.5.4 Implementing Controlled Unitary Gates

The output from the procedure described in Section 5.5.3 con-
sists of two types of gates; Controlled–NOT gates and Controlled–
U gates. Our SQRAM machine is able to directly imple-
ment Controlled–NOT gates through the CNOT instruction, but
Controlled–U gates require further decomposition. This section
shows briefly how this is done, building on work presented by
Barencoet al. in [1].

Barencoet al. make the observation that for any unitary matrix
U of side length2 (i.e. operating on a single qubit) it is possible to
find 3 more unitary matricesA,B, andC such that:

A×B × C = I

and:

S × A×NOT ×B ×NOT × C = U

whereS is defined as:

S =

»

eiδ 0
0 eiδ

–

A controlled–S gate can be simulated by a unitary operator
E acting on the control bit, hence it is possible to produce an
implementation of an arbitrary operatorU using a circuit such as
the one shown in Figure 9. For unitary gates controlled by multiple
qubits the procedure is similar; we find a set of unitaries which can
either implement the original unitary matrix or can implement the
identity matrix, depending on the use of CNOT gates in between.
However the actual process of generating both the gates and the
sequence of CNOTs is considerably more complex (see [1, 15]).

U A B C

E
=

Figure 9. Implementation of an Arbitrary Unitary

The problem then becomes determining suitable values for the
operatorsA,B,C, andE, expressions for doing so are established
in [1] though we will not re–iterate them here.

6. Conclusions and Future Work
In this work we have presented an architecture for quantum com-
putation, studied quantum programming languages and theirrela-
tionship to our architecture, and looked at the issues involved in
compiling quantum languages to byte–code.

We began by presenting a quantum computer based on the
QRAM architecture originally suggested by Knill. We designed the
instruction set and method of operation for the classical component
such that it could be used as a stand–alone processor or as a
control mechanism for a quantum component. We then designed
the quantum component with an instruction set which makes it
universal for quantum computation we allow data to be passed
between the two components.

After studying the low level byte–code programs which can be
written directly on the SQRAM machine we studied higher level
languages and the advantages of using them to write quantum al-
gorithms. The general ideas surrounding quantum languageswere
discussed and we then provided a brief comparison of the features
available in several of the languages available today.

We then moved on to the issue of generating instructions for
our SQRAM machine based on a program written in QPL. Part of
this involved creating ‘code templates’ for the various constructs in
the QPL language, and part of it involved decomposing complex
operations into those suitable for our SQRAM model. This decom-
position process was based on work by various people but due to
space limitations we avoided going too deeply into the mathematics
involved.

We consider the work carried out to date to be a great success
but there is the potential for much more work to be done. Some of
the ideas presented here have been started and are already showing
promise.

6.1 SQRAM Model and Simulator

We stated that the instruction set provided was universal for quan-
tum computing; that is not to say it cannot be improved. Thereare
different universal sets available and there are also advantages to
having a certain amount of redundancy (as with the GATE instruc-
tion). An analysis of the advantages and disadvantages of different
instruction sets could yield a more efficient SQRAM architecture.
There is also scope for expanding the classical instructionset as the
current one is just a proof–of–concept allowing us to focus on the
quantum work. More sophisticated conditional control statements
(as opposed to simply using the JUMPZ instruction) would ease the
development of complex control structures and a greater range of
instructions for manipulating classical data would also bedesirable.

A discussion of the actual physics involved in building a quan-
tum computer has been avoided in this paper and, as far as possi-
ble, in the SQRAM model. In practice there are many real physical
aspects which would affect a SQRAMs behaviour. For example,
when using the ion trap technique [4] it is easier to perform opera-
tions on multiple qubits if they are adjacent to each other. It would
be interesting to integrate such constraints into the model.

A related idea is to model the effects of ‘quantum decoherence’
on the SQRAM machine. Quantum decoherence is the process
of errors arising due to undesirable interaction with an external
system (something which is impossible to avoid in practice). The
QPL language was designed for ‘perfect’ hardware in which such
interactions do not occur but, given the impossibility of building
such hardware, it would be useful to introduce errors into the
results of the simulation so that techniques for combating them
can be developed. Existing methods can also be tested and their
effectiveness determined within the context of the QPL/SQRAM
system.

Lastly, the tools developed so far have been for our own internal
research purposes. They are slightly obscure, command–line affairs
which require a degree of inside knowledge to use effectively. We
feel that it would be beneficial to the larger research community if
these tools could be more widely used and to this end we intend
to refine the tools and provide them with a more friendly and
intuitive user interface. There are plans to develop the tools into a
complete environment for the development and testing of quantum
algorithms.

6.2 The QPL Compiler

One of the distinguishing features of the QPL language is a static
type checking system which allows certain errors to be detected
at compile time rather than run time. For example, the statictype
system is able to enforce the no–cloning principle of quantum
mechanics within QPL programs. We have not yet implemented
such static type checking within our compiler but aim to do soin the
near future. This should look at type checking issues when working
with more complex quantum structures (lists, trees, etc) and could
also consider type checking within the higher–order version of QPL
currently being worked on by Peter Selinger.

More generally, the compiler needs work to make it more ‘com-
plete’. It implements only a subset of QPL, the focus being on
those parts which were necessary to test ideas presented in this pa-
per. More work on the classical control structures would enable a
wider range of programs to be implemented and better data struc-
tures (currently only limited support for lists is available) would
allow more interesting algorithms. We also plan to extend the com-
piler with features for concurrency and communication (discussed
next).

6.3 Communication and Concurrency

Although it has not been described in this paper we have also un-
dertaken some work to integrate constructs for communication and

concurrency into the QPL language and SQRAM simulator. These
changes to QPL have yielded a new language, CQP [7], which
is able to describe algorithms such as quantum key exchange and
quantum teleportation. We aim to integrate this into our compiler;
the simulator has already had such support added.

References
[1] A. Barenco, C. Bennett, R. Cleve, D. Divincenzo, N. Margolus,

P. Shor, T. Sleator, J. Smoli, and H. Weinfurter. Elementarygates for
quantum computation.Submitted to Physical Review A, 1995.

[2] S. Bettelli, T. Calarco, and L. Serafini. Toward an architecture for
quantum programming.The European Physical Journal, 25(2):181–
200, 2003.

[3] P. E. Black and A. W. Lane. Modeling quantum information systems,
2004. Unpublished.

[4] J. Cirac and P. Zoller. Quantum computations with cold trapped ions.
Physical Review Letters, 74:4091, 1995.

[5] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantum
algorithms revisited.Submitted to Phil. Trans. R. Soc. Lond. A, 1997.

[6] R. Feynman. Simulating physics with computers.International
Journal of Theoretical Physics, 21(6&7):467–488, 1982.

[7] S. Gay and R. Nagarajan. Communicating quantum processes. In
POPL ’05: Proceedings of the 32nd ACM Symposium on Principles
of Programming Languages, Long Beach, California, January 2005.

[8] E. Knill. Conventions for quantum pseudocode, 1996.
[9] M. Nielson and I. Chuang.Quantum Computation and Quantum

Information. Cambridge University Press, 2000.
[10] B. Omer. A procedural formalism for quantum computing,1998.
[11] N. Papanikolaou.QSPEC: A programming language for quantum

communication systems design. InProceedings of PREP2004
Postgraduate Research Conference in Electronics, Photonics,
Communications & Networks, and Computing Science. EPSRC, 2004.

[12] Y. Pritzker. Simulation of quantum computation on intel-based
architectures, 1999.

[13] P. Selinger. Towards a quantum programming language.Mathemati-
cal Structures in Computer Science, 14(4):527–586, 2004.

[14] K. Svore, A. Cross, A. Aho, I. Chuang, and I. Markov. Toward
a software architecture for quantum computing design tools.
Proceedings of the 2nd International Conference on Quantum
Programming Languages, pages 145–162, 2004.

[15] D. Williams. Quantum computer architecture, assemblylanguage and
compilation, 2004.

[16] A. Zeilinger, M. Reck, H. Bernstein, and P. Bertani. Experimental
realization of any discrete unitary operator.Physical Review Letters,
73(1):58–61, 1994.

A. Sample Simulator Output
We provide here the output of our simulator when performing a
simulation of Deutsch’s Algorithm as described in Section 4.4.
Initialising QRAM machine...
Sum of probabilities: 1.0000

ff

(1)

Loading program...
Loading AQbitInstruction
Loading GateInstruction
Loading CNotInstruction
Loading MsreInstruction
Load succeeded

9

>

>

>

>

>

=

>

>

>

>

>

;

(2)

*** QRAM Quantum State ***
1.000000 |000>

ff

(3)

Allocating new QBit
*** QRAM Quantum State ***

1.000000 |000>

Allocating new QBit
*** QRAM Quantum State ***

1.000000 |000>

9

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

;

(4)

Applying Gate operation to bit 1
*** QRAM Quantum State ***

1.000000 |010>

9

=

;

(5)

Applying Gate operation to bit 0
*** QRAM Quantum State ***

0.707100 |010> +...
...0.707100 |011>

Applying Gate operation to bit 1
*** QRAM Quantum State ***

0.499990 |000> +...
...0.499990 |001> +...
...-0.499990 |010> +...
...-0.499990 |011>

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(6)

Applying Gate operation to bit 0
*** QRAM Quantum State ***

0.499990 |000> +...
...0.499990 |001> +...
...-0.499990 |010> +...
...-0.499990 |011>

9

>

>

>

>

>

=

>

>

>

>

>

;

(7)

Performing CNot Instruction
Controlling: 2 Controlled: 1
In common: 0
(-0.49999,0)(-0.49999,0)...
...(0.49999,0)(0.49999,0)...
...(0,0)(0,0)(0,0)(0,0)
(-0.49999,0)(-0.49999,0)...
...(0.49999,0)(0.49999,0)...
...(0,0)(0,0)(0,0)(0,0)
*** QRAM Quantum State ***

-0.499990 |000> +...
...-0.499990 |001> +...
...0.499990 |010> +...
...0.499990 |011>

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(8)

Applying Gate operation to bit 0
*** QRAM Quantum State ***

-0.707086 |000> +...
...0.707086 |010>

9

>

=

>

;

(9)

Measuring QBit 0
Got probabilities...p0=1.000,...

...p1=0.000
Sum of probabilities: 0.99994
Normalized amplitudes: 0.99994
norm(*this)+RND ERR =...
...0.9999424611046097144395617
norm(*this)-RND ERR =...
...0.9999424611026097586830019
p0+p1 should be between those...
...and it is 0.9999424611
Set bit state to 0
*** QRAM Quantum State ***

-0.707107 |000> +...
...0.707107 |010>

9

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

;

(10)

