Simulating and Compiling Code for the
Sequential Quantum Random Access Machine

Rajagopal Nagarajan

Department of Computer Science
University of Warwick
Coventry CV4 7AL
United Kingdom

biju@dcs.warwick.ac.uk

Abstract

We present the SQRAM architecture for quantum computing,
which is based on Knill's QRAM model. We detail a suitable in-
struction set, which implements a universal set of quantatesy
and demonstrate the operation of the SQRAM with Deutschésigu
tum algorithm.

The compilation of high-level quantum programs for the
SQRAM machine is considered; we present templates for goant
assembly code and a method for decomposing matrices for com-
plex quantum operations. The SQRAM simulator and compiler a
discussed, along with directions for future work.

1. Introduction

The rapidly growing field of quantum computation and quantum
information is still in its infancy, largely due to the lack @ sub-
stantial, practical quantum computing device. Howeve, ttieo-
retical potential of such devices is widely acknowledgeesEntly,
the only realistic avenue of investigation for an interdstemputer
scientist is the use of quantum computer simulators.

Owing to the large state spaces of quantum-mechanical sys-

tems, a complete simulator of subatomic phenomena cannot be

implemented efficiently on a classical computer. Nobel date
Richard Feynman observed in 1985 that [6]:

“...if a description of an isolated part of Nature wiffi
particles requires a general function &f variables and if

a computer simulates this by actually computing or storing
this function then doubling the size of Natur (— 2N)
would require an exponentially explosive growth in the size
of the simulating computer.”

Focusing on quantum mechanics in particular, Feynman goint
out that:

“...the full description of quantum mechanics for a
large system withR particles is given by a function
Y(z1,x2,. .., TR, t) whichwe call the amplitude to find the
particles ate1, x2, . . . , xr and therefore, because it has too
many variables, itannot be simulated with a normal com-
puter with a number of elements proportionalqg. . .].”

Our goals in this paper are substantially more modest; we are
interested in local quantum computation on a finite number of
quantum bits qubits). In particular, we will discuss the design of
a hybrid classical-quantum computer architecture, whiehwil
call the Sequential Quantum Random Access Memory machine, o
SQRAM for short. The SQRAM design is based on Knill's QRAM

Nikolaos Papanikolaou

Department of Computer Science
University of Warwick
Coventry CV4 7AL
United Kingdom

nikos@dcs.warwick.ac.uk

David Williams

School of Informatics
City University
London EC1V OHB
United Kingdom

david@david-williams.info

model [8]. In addition, we will define an instruction set fohgpo-
thetical implementation of the SQRAM, and illustrate theiaion
of such a device when running Deutsch’s algorithm for deiieing
the balance of a boolean function [9]. We have implementécha s
ulator of the SQRAM machine using the OpenQubit library [12]

In light of recent proposals for quantum programming lan-
guages, including QPL [13], QCL [10], CQP [7] and gSpec [11],
we feel it is suitable to consider compilation of high—leggbntum
programs; we discuss techniques for this and present a e
have developed for a subset of QPL.

We begin with a summary of basic quantum computing con-
cepts. We will then proceed to describe the proposed SQRAM ar
chitecture and instruction set; this is followed by a watktigh of
Deutsch’s algorithm, as implemented on the SQRAM. Finaliy,
will turn to compilation of high—level quantum programs iPQ a
functional quantum programming language due to Selinger.

2. Related Work

Currently several quantum simulators are available, gholyitools
for analysing quantum circuits and interpreters for quanfuro-
gramming languages [3, 10].

With the notable exception of a joint Columbia and MIT
project [14], there has been little work to date on the dgwalent
of a quantum computer architecture which is realisablegusin-
rent technology. In [14], a multi-layer framework is definadich
models different levels of abstraction for a quantum corapsim-
ulator; however, the authors account for specific aspegibysical
implementation; on the contrary, we simply rely on the hyiesis
that the proposed system architecture may be implementeéd wi
present—day hardware, and do not concern ourselves waliglet
the physics.

3. Quantum Computing Fundamentals

A few preliminaries are in order; we are assuming no priomkno
edge of quantum computing.

A quantum bit or qubit is a physical system which has two basis
states, conventionally writtefd)) and |1), corresponding to one-
bit classical values. These could be, for example, spirestat a
particle or polarization states of a photon, but we do nosicier
physical details. According to quantum theory, a genestbstf a
guantum system is superposition or linear combination of basis
states. A qubit has statg0) + 3|1), wherea and3 are complex
numbers such that|®> + |3]> = 1; states which differ only by
a (complex) scalar factor with modulus are indistinguishable.
States can be represented by column vec{dfs= a(0) + 3[1).
Formally, a quantum state is a unit vector in a Hilbert spaee,

a complex vector space equipped with an inner product gatésf
certain axioms.

The basig|0), |1) } is known as thetandard basis. Other bases
are sometimes of interest, especially ttiagonal (or dual, or
Hadamard) basis consisting of the vectors

_ L - L

7 =

I+) NG

(10) +11)) and|-) (10) = 1))

algorithm design is to make measurements which enable #nis p
allelism to be exploited; in general this is very difficult.

The controlled not (CNOT) operator on pairs of qubits per-
forms the mappind00) — [00), |01) — |01), |10) — |11),
|11) — |10), which can be understood as inverting the second
qubit (thetarget) if and only if the first qubit (thecontrol) is set.
The action on general states is obtained by linearity.

Systems of two or more qubits may be éntangled states,

Evolution of a closed quantum system can be described by a meaning that the states of the qubits are correlated. Fongea

unitary transformation. If the state of a qubit is represented by a
column vector then a unitary transformatibncan be represented
by a complex-valued matrigu;;) such thal/ —* = U*, wherelU*
is the conjugate-transpose &f (i.e. elementj of U™ is uj;). U
acts by matrix multiplication:

uo1 (67

ui| | B

o — |uoo
B~ |uio
A unitary transformation can also be defined by its effect asid

states, which is extended linearly to the whole space. Fameie,
theHadamard operator is defined by

0~ 1) =500+
)~ =) =500 - 5l
which corresponds to the matrid = % } _11] The Pauli
operators, denoted Iy, 01, 02, 03, are defined by
1o ~Jo 1
90=10 1 1=11 0

o I
it 0 0 -1

Measurement plays a key role in quantum physics. If a qubit
is in statea|0) + 3|1) then measuring its value gives the result
with probability || (leaving it in statg0)) and the result with
probability | 3] (leaving it in statg1)).

For example, if a qubit is in state-) then a measurement (with
respect to the standard basis) gives reSuland statel0)) with
probability 1, and resultl (and statg1)) with probability 1. If a
qubit is in state|0) then a measurement gives resilfand state
|0)) with probability 1.

To go beyond single-qubit systems, we consider tensor prod-
ucts of spaces (in contrast to the cartesian products usgdsai-
cal systems). If spacds andV have basegu;} and{v;} then
U ® V has basis{u; ® v;}. In particular, a system consisting
of n qubits has &"-dimensional space whose standard basis is
[00...0)...|11...1). We can now consider measurements of sin-
gle qubits or collective measurements of multiple qubits.éxam-
ple, a2-qubit system has basjg0), |01), |10}, |11) and a general
state isa|00) + B|01) + ~|10) + §|11) with |a|® + 8] + |v|* +
|| = 1. Measuring the first qubit gives resuliwith probability

2 2 : : 1
|a|*+|B|* (leaving the system in statem(a|00>+ﬁ|01>))
and resultl with probability |y|*> + |6]* (leaving the system in

statem (v]10) + 4]11))); in each case we renormalize the
Y

state by multiplying by a suitable scalar factor. Measurioagh
qubits simultaneously gives resultwith probability |a|? (leav-
ing the system in stat®0)), result1 with probability |3]> (leav-
ing the system in statf)1)) and so on; the association of basis
states|00), |01), |10), |11) with results0, 1, 2, 3 is just a conven-
tional choice. The power of quantum computing, in an algerit
mic sense, results from calculating with superpositionstates;
all of the states in the superposition are transformed sanet
ously (uantum parallelism) and the effect increases exponentially
with the dimension of the state space. The challenge in quant

consider a measurement of the first qubit of the s&\%(ﬂ()()) +

|11)). The result i) (and the resulting state |{80)) with proba-
bility 1, or 1 (and the resulting state {31)) with probability 1.

In either case, a subsequent measurement of the secondjiyeksit

a definite, non—probabilistic result which is identical be tresult

of the first measurement. This is true even if the entangldwitgu
are physically separated. Entanglement illustrates tlyediiéer-
ence between the use of the tensor product (in quantum sgstem
and the cartesian product (in classical systems): an elethstate

of two qubits is one which cannot be expressed as a tensof prod
uct of single-qubit states. The Hadamard &OT operators can
be combined to create entangled sta@SOT((H ® I1)|00)) =

2(l00) +[11)).

4. The SQRAM Architecture

In this section we propose a system architecture for a hybrid
classical-quantum computer, with a conventional claksidasys-

tem (consisting of a CPU, a classical data store and progiem)s
and a separate quantum—mechanical unit. Such a devicegderm
a QRAM machine, was proposed by Knill in [8]. The quantum—
mechanical unit consists of a quantum memory register and a
means of manipulating its contents. We will describe thaitkeof

this architecture, including its operating cycle and instion set.

4.1 The Classical Component

The CPU contains an Arithmetic—Logic Unit for evaluatingsgi-
cal expressions, a control unit, and a program counter,wltéeps
track of the current point of execution within the prograwrst(the
program store is separate from the data store for simplicitge
CPU does not contain any registers as all operations arerpeatl
on the data store. The data store operates a stack—basethwitde
for the evaluation of expressions and for the allocatiorenfables;
this fits well with the functional programming paradigm arihs
plifies code generation for the compiler.

Program execution begins with the program counter, locst ba
and stack top all cleared to An instruction is retrieved from the
location given by the program counter and executed, theegsois
then repeated. Most instructions cause the program cototes
incremented but some (such as jumping and halting instng}i
have different effects (see Table 1 for a listing of the alal# clas-
sical instructions). Program execution is finished onceptiogram
counter goes past the end of the program store.

4.2 The Quantum Component

The quantum subsystem comprises a quantum register anda Qua
tum Hardware Interface (QHI), which receives instructidresn

the CPU and manipulates qubits accordingly. Figure 2 iiaies

the stages of a typical quantum algorithm.

In the first stage, the hardware resets the qubits tdthstate
and then applies some transformation to place them in thieedes
initial state. Applying this transformation could be catesied to
be part of the computation, but conceptually it helps to TSt
as part of the initialisation. The second stage is where taripa
ulation of the quantum state actually takes place. Aftercim-
putation is complete, the result is measured. Each measuitgtl

Table 1. SQRAM Machine Classical Instruction Set
Instruction | Effect |

st«—st—1
ADD DS[st — 1] « DSJ[st — 1] + DS]st]
pc—pc+1
HALT pc — size(PS)
st«—st—1
if(DS[st —1] =0):
JUMPZ address pc «— address
else:
pc—pc+1
DS[st] — DS[lb + offsel]
LOAD offset st «— st+1
pc—pc+1
DS|st] — value
LOADLvalue st—st+1
pc—pc+1
st«—st—1
SAVE offset DS[ib + offset] «— DS[st]
pc—pc+1
st«—st—1
SUBTRACT DS|st — 1] — DS|st — 1] — DS][st]
pc—pc+1
o Classical Component || Quanium Component |
3 Results Of Measur‘emem.s 3
i T T Quantum !
| Program ! , Hardware :
! Store - Interface |
! Operations '
i Instructions 3 3 '
| o iﬁ |
1 : ; Quantum State :
3 Central Processing Unit l 1 }
| b |oxoF— 1
' Arithmetic Control Program | | i
! Logic Unit Unit Counter ! i !
3 ‘ ‘ o
| Read/ ! i Stack S |
! Write Lo Top 2|
| j E v 5|
| L 2|
! oxoo00 PA@S® | ocaiBase ox000F | | 1 |Local S
! ! 3 Base Cl
1 | oxFFro sxacLTop OxFFliF : i 0x00—~ 3

Key: N Data store out of scope
[] patastoreinuse
[] patastore not yet allocated

Figure 1. Design of the SQRAM machine

yields a binary valug0, 1} which is returned to the CPU and can
be used for conditional control purposes. The final stagekshthe
validity of the result and performs the computation againei€es-
sary. Incorrect results may occur either due to problemh thie
hardware, allowing quantum states to become damaged, dodue
the algorithm being probabilistic by nature and hence notgs
producing the desired result.

As was explained in Section 3, the state is transformed by
applying a sequence of operations to it; these may operatnon
arbitrary number of qubits and the only restriction is thagyt
must be unitary. While this is accurate from a theoreticahtpof

Initialisation
and Loading

Quantum State

Measurement X
Evolution Checking

of State F---

Repeat if Necessary

Figure 2. SQRAM Operating Cycle

Table 2. SQRAM Machine Quantum Instruction Set

Instruction Effect
gst «— qst +1
AQBIT pe—pe+1
CNOT tar QR[tar] < tar x cnot(cont, inv,...)
continv pc — pc+ 1
GATE tar QR[tar] < tar x gate(a,b,c,d)
abcd pc «— pc+1
T T 1 T
HDMD tar QR[tar] < tar x gate(ﬁ7 75 T _W)
pc—pc+1
DS[st] — measure(tar)
MSRE tar st—st+1
pc<+—pc+ 1
PHASE tar QR[tar] < tar x gate(1,0,0,1)
pc—pc+1
Pl tar QRJtar] « tar x gate(1,0,0,e™/*)
pc—pc+1

view it is at the present time very difficult to implement draiy
operations on arbitrary numbers of qubits. Fortunatelg kriown
that there is a small set of operations (actually an infinitmber
of such sets) which is universal in that it is ableafgproximate an
arbitrary operation to any given accuracy [9].

We now introduce the operations which make up one of these
universal sets (known as thandard set). The first operation is
the Controlled—NOT (CNOT), which we described previoushis
operation can be combined with arbitrary single qubit op@na to
exactly implement any quantum operation on an arbitrary number
of qubits.

The universal set also includegpproximate arbitrary single
qubit operations. Within the standard set these are the Hadh
Operator (denoted b#f), the Phase Operatof) and ther/8 op-
erator. We use the standard universal set as the basis fioisthec-
tion set of the SQRAM, along with instructions for measurame
and initialisation, and a classical set of instructionscfmntrol pur-
poses. We also include an instruction for performing aabytiop-
erations on single qubits. The ‘quantum part’ of the inginrcset
is summarised in Table 2.

4.3 Deutsch’s Algorithm on the SQRAM

We now present an example of a program written for the SQRAM
machine. We will be using a revised and improved version of
Deutsch’s algorithm as given in [5]; this paper should bescited

for further details of the algorithm, as the descriptionegivhere
will be necessarily brief.

We are presented with a black—box which performs some func-
tion f(z) on a single bitz. There are four possible functions
which f(x) could perform, these beingi(z) = 0, f(z) = 1,

f(z) = NOT(z), and f(z) = x. Of these the first two are called
constant because they always give the same result, while the sec-
ond two are callethalanced because half the inputs resultGrand

half result in1. The problem is to determine, using as few function
evaluations as possible, wheth#r) is constant or balanced.

If done classically, this requires two function evaluaipone
with an input of0 and the other with an input af and a comparison
of the results. However, using Deutsch’s algorithm on a tpran

computer it is possible to use just one function evaluatiote
that if the function is constant thef{0) & f(1) = 0, while if it
is balanced therf(0) @ f(1) = 1. Using the circuit in Figure 3
it is possible to evaluatg(0) ¢ f(1) with out ever finding out the
values off(0) and f(1).

Figure 3. A Circuit Implementing Deutsch’s Algorithm.

To illustrate this as SQRAM assembly code we choose a func-
tion to test; we will work with the NOT gate as it is straightfeard.
The NOT gate is balanced, so the result of evaluafif® ¢ f(1)
should bel. The code to be executed on the SQRAM machine is
given in Algorithm 4.3.

Compared to the circuit representation the code requirds ad
tional initialisation as all qubits are automatically ialised to|0)
where as the second qubit needs to begin in $tatea NOT oper-
ation resolves this. Note that the NOT operation has bediseda
using the GATE instruction, it could equally well be donengsa
CNOT with no controls.

The example mostly illustrates quantum instructions aslee
sical ones should be familiar to most readers. The only icalss-
struction used is SAVE, which stores the result of the measant
at the top of the classical stack. Further code could cantitly
jump based on this value to give feedback to the user.

4.4 Simulating the SQRAM

In order to evaluate and analyse the design of the SQRAM, we ha
developed a software simulator. Simulation of quantum raeicial
systems is known to be a highly complex problem (as observed
by Richard Feynman in [6]), and so our simulator is restddte

a relatively small number of qubits. However, there are isdve
known quantum algorithms which only make use of a few qubits;
we have succeeded in modelling these.

The simulator makes use of the ‘OpenQubit’ library [12]. §hi
is an Open Source library designed to be used in projectévingp
the modelling of quantum systems. The library (written in+C+
provides a class to represent the state of a system (by Gi@io-
tentially large, complex vector) and a set of classes reptes)
valid transformations which can be applied to that state.sDuu-
lator implements the classical component and fetch—egenudle
of the SQRAM machine directly and also makes use of the Open-
Qubit library to implement the quantum part. As far as pdsdite
architecture of the simulated SQRAM machine matches theat pr
sented earlier in Figure 1, and the instruction set also Imeatthe
one specified.

One key difference between the simulator and the design pre-
sented in Figure 1 is an additional layer of abstraction eildoe-
tween the quantum register and the processor. The simydeder
vides a ‘universe’ of qubits and the quantum register isalbtua
collection of references to qubits within the universe, ka1 in
Figure 5. It is designed in this way so as to simplify the pescef
transmitting qubits from one machine to another; it is jushge of
passing references. Although the issue of such commuoitai
not discussed here it is a topic for future work.

We provide in Appendix A an example of the SQRAM machine
simulator performing a simulation of Deutsch’s algorithasing
the bytecode presented in Algorithm 4.3. The algorithm ssithg
the NOT function, so we expect it to determine that the fuorcti
is balanced. We have broken the output into sections which are
numbered to allow them to be referenced from the text.

AQBIT ;allocate initial qubits

AQBIT

GATE 0x01 0.0 0.0 initialise second qubit to 1
1.00.01.00.0
0.00.0

HDMD 0x00 ;apply Hadamards

HDMD 0x01

GATE 0x00 0.0 0.0 NOT gate is our test function
1.00.01.0 0.0
0.0 0.0

CNOT 0x01100 ;apply the CNOT gate

HDMD 0x00 ;the last Hadamard

MSRE 0x00 ;measure the result

SAVE 0x00 ;save to address 0x00 for later

Figure 4. SQRAM Program Implementing Deutsch’s Algorithm

Universe of Qubits
RIS

SQRAM ,

Figure 5. SQRAM machine accessing qubits via references

The simulator begins by creating an instance of the QRAM
class (with three qubits) and initialising it to its stagistate (step
1). As always the sum of the probability amplitudes must tie
The program is then read from disk and loaded into the SQRAM
machine (step 2). The machine starts off with all qubits sets
|0), it can optionally output the state of classical memory a8 we
but we won't be using that here. Note that the display (stepf3)
the machine state always shows all three qubits even thooigé n
of them have been allocated yet, and even though we will only
be using two of them. Execution of the program begins with the
allocation of two qubits (step 4), a result of two successi@BIT
instructions. Qubits are initialised to th@ state.

It can be seen from Figure 3 that the lower qubit needs toistart
state|1) instead. A GATE operation implementing the NOT func-
tion is applied (step 5) to change this. The two Hadamardamre
plied next (step 6), eventually leaving the system is an lesura
perposition of the statg800),|001),/010),/011). Again remember
that the first qubit is stil|0) because it has not been allocated.

In (step 7) we apply the test function, which in our case is
the GATE instruction implementing the NOT function. We then
perform a CNOT operation (step 8), conditional on the resfutiur
test function. Some of the output is generated by the OpeitQub
library rather than by our simulator, hence the target antrob
qubits are referred to ak and 2 respectively, whereas we have
previously called ther and1.

The last Hadamard is applied (step 9) which leaves duibit
state|0) (as expected). Of course, although we can see the result
by ‘peeking’ into the simulator, in reality we can't tell uintve
perform the measurement. During the measurement the OfEnQu
library generates some more output (step 10), the evergsaltr
being that the qubit is correctly measured tolb€elhis indicates
our test function was balanced.

5. Compiling High-L evel Languagesfor the
SQRAM

It is, of course, impractical to write large programs by haisthg
the instructions set presented in the previous sectioniadsta
task which is both time consuming and error prone. The smiuti
the field of classical computing has been to develop progriagnm
languages which can be automatically compiled into comedimg
machine code; this is also one of the solutions for quantum-co
puters.

It is by no means the only solution as many theoretical break-
throughs are made by studying the underlying mathematics of
guantum mechanics and another notation known as ‘quantum ci
cuits’ has also proved popular. However there are seveasbres
why there has been a growing interest in the use of quantum pro
gramming languages.

Perhaps the most important point is that use of a language el-
egantly allows a mixture of classical control structurethvguan-
tum operations; this is something which is very difficult tmwith
a quantum circuit model. It fits well with the model of compida
used by our SQRAM machine (and by most quantum algorithms) in
which the majority of the operations are classical. A secahhn-
tage (as in classical programming) is that the generaticedti-
tive code structures is handled automatically by the coenpihd it
is able to perform optimisations which would be difficult barial.
Finally, the programming model is far more intuitive to mostn-
puter scientists and will greatly ease the developmenigafrdhms.

5.1 Quantum Language Requirements

It is possible to identify a set of properties which a quanfno-
gramming language should possess in order to maximisefée ef
tiveness of the language. Some of the ideas given have been pr
ously suggested by other research groups [2, 8, 13] whilesom
based on experience.

Classical Characteristics:Many years of research on classical
languages have identified properties such as a clean symtiax a
intuitive set of keywords as being important for languages.

Completeness:The language should be universal such that it can
represent all quantum algorithms. This gives it the same ex-
pressive power as the mathematical model or quantum circuit
model.

Expressivity: The language should present the programmer with a
sufficient set of primitives (such as qubits) and constr(sish
as measurements) to allow programs to be constructed .easily

Separability: It should be easy to achieve separation of those
parts of the program which are quantum in nature from those
parts which are classical as this can simplify compilatiod a
execution of the code.

Hardware Independence:Although in this paper we present the
SQRAM machine as a model of computation it is important

to realise that other models may be developed and a language,

should ideally work on these. A language should be kept as gen

eral as possible perhaps by using the quantum Turing machine

as the target.

Extension of Classical LanguagesMuch research has been un-
dertaken analysing the advantages of different progragmin

paradigms and by extending an existing language which uses

QPLTerms P,Q :: = new bit b :

=0
| new gbit ¢ := 0
| discard z |b:=0|b:=1
| q1,...,qnx = S | skip | P;Q
| if b then P else Q

| measure ¢ then P else Q

| while b do P
| proc X : T —TI'{P}in Q
|y17"'7ym:X(1’1,-..,:L‘n)

Figure 6. The syntax of Peter Selinger's QPL.

5.2 Particularities of Quantum Systems Affecting Language
Designs

The inability to clone an unknown quantum state has a diféatte
on the behaviour of statements which involve assignmemgiseth
include direct assignment and passing values to funct®esause

it is not possible to actually copy the value many languagakem
use of references and hence have many variables pointirtgeto t
same qubit. Other languages may forbid the direct assignofen
quantum variables.

Although as noted previously it is not possible to assign one
qubit to another it is possible to assign a qubit to a clakbitehis
involves an implicit measurement. Unlike in classical pesgming
this will modify the variable on the right hand side of theigas
ment and it is not possible to retrieve the previous value.

It is possible for two qubits identified by separate variable
names to become entangled such that the manipulation ofasire v
able has an effect on the other. There is no analogy to thikag c
sical programming although it is not so much an issue for dhe |
guage but rather for the programmer who designs the algaesith

5.3 A Functional Language: QPL

Given the requirements which have been set out there areaseve
languages which meet them to varying degrees [2, 8, 10]. @dt w
focuses on one in particular, Peter Selinger's QPL [13], tduiés
clean and elegant design, and its suitability for impleragon on
the SQRAM machine.

Selinger identifies the static type system as being one ddpe
features of his language as this allows the syntax to enfredain
properties of quantum mechanics such as the no—cloningetmo
by forbidding direct assignment between qubits. As well e t
usual control constructs such as loops and conditionagrstts
QPL allows the definition of recursive functions. This is fuse
when operating over lists and trees which QPL allows to donta
guantum data as well as classical. The syntax of QPL is rejsat
from [13] in Figure 5.3.

5.4 Code Templates for Quantum Operations

Code generation, for our purposes, is the process of proguci
bytecode instructions for each of the nodes in the abstyatas
tree corresponding to a high—level program. We have dedigode
templates for the quantum constructs within the QPL langwzagl
have also considered the decomposition of large operasorthey
may be implemented directly in bytecode.

Code templates are used within compilers to provide a set of

one of these we get a language with which programmers are pyte_code instructions which correspond to a particulastract
familiar and which has an existing set of tools. Hence much in the source program, such as an expression, a loop, orabieri
unnecessary work can be avoided duplicating features. declaration. We specify code templates for those constmuhtch

are quantum in nature but do not give details of classicastroats
as these are very similar to existing languages. Specifjcak
cover the declaration of quantum types, the manipulatiotnase
types, and their eventual measurement.

Within QPL a new qubit is declared using a statement such as:

(new gbit q := 0)

This allocates a new qubit, referred to by the variable ngme
and initialises it to the stat®). To implement this we simply use
the AQBIT instruction:

translate[new gbit q:=0] = AQBIT

wheretranslate is a function that specifies a translation of terms in
QPL to SQRAM bytecode.

A transformation is applied to a quantum data type using the
x = operator. For example, the built-in unitary transformatio
could be applied tq as follows:

(q *=U)

There are two situations to consider here. Firstlynight be a
single qubit operation which we wish to implement directsing
the GATE instruction. This becomes:

translation[q *= U] = GATE q U

Alternatively U might be a multi-qubit operation (in which
caseq would need to be a multi-qubit data type), or it might be
a single qubit operation which we wish to decompose intogjate
from the universal set of operations. Either way, we move the
decomposition process which is discussed in Section 5.5.

Measurement is the most complex of the code templates (as-5 g Generating Tvo-

suming we don’t get involved with decomposition when matapu
ing quantum types). QPL performs measurement by the fatigwi
statement:

measure q then P else Q

A measurement is performed on the quditlf the result of
the measurement id) then the command correspondingRas
executed, otherwise the command corresponding i® executed.
The code template for this looks as follows:

translation[measure q then Pelse Q] =

MSRE q ;Perform the measurement
JUMPZ ELSE ;If it’s |0) then jump to else part
execute P ;Else execute command P
LOADL O ;Unconditionally jump to end
JUMPZ END ;by loading 0 and jumping if 0
ELSE: execute Q ;Execute command Q

END:

If the measurement af gives a value ol then the JUMPZ in-
struction is ignored and the program proceeds to exdeuiefore
unconditionally jumping over the code to exec@eOn the other
hand, ifq is measured a8 the first JUMPZ jumps over the execu-
tion of P straight to the point wher® is executed.

5.5 Decomposition of Operator Matrices
In Section 4.2 we discussed the principle of universaltgtiisg that

Stage 1 Stage 2

111 Ujpm - Uy, Generate a Generate sequence
Uy Uyym - Uy, set of two of CNOT gates to allow
o \\ ' level unitary implementation by controlled
U U - Uy, matrices single qubit operation

l

Implement controlled

unitary operation with

single qubit operations
and CNOT's

Generate primitive
operations to
approximate single
qubit operation.

Hj

Output

Stage 3 Stage 4

Figure 7. Decomposition of an Arbitrary Unitary Matrix

5.5.1 Overview

Decomposing a matrix into primitive operations is a mustig
process (outlined in Figure 7); each of the stages showrsizited
in the following sections. The mathematical proofs for thédity
of each stage of the process are well established and work has
previously been done looking at the optimal number of gatgishv
can be used to approximate a given unitary matrix. Therefose
work focuses on designing algorithms to implement the gsead
performing classical efficiency analysis on these algorithit is to
our knowledge the first system to implement the completegqa®c
from arbitrary operations to quantum byte—code within a giten

A working compiler has been implemented to test the concepts
presented in the following sections but we will not discussm-
plementation here. For details of this including designrapphes,
examples, and sample output please refer to [15].

Level Unitary Matrices

Two-level unitary matrices are those which act non-trlyiah only

2 vector components of the system state; that is ,when thenisc
multiplied by the matrix only two elements are changed astmos
elements in the matrix are identity. Such a matrix has a&tre@as
follows:

1 0 0 0 0 0
0 a O 0 v O
0 0 1 0 0 O
R = : : R @
0O 0 O 1 0 O
0 8 0 0 6 0
0 0 O 0 0 1

The initial step is to decompose the original mattixof side
lengths into a sequence of two-level unitary matrices (also of side
length s). The product of the matrices in this sequence must be
equal to the input matrik/, so that applying them to the system in
the correct order has the same effect as appl¥ing

Performing this decomposition is not only necessary fonte
stage, itis also a result in its own right. A description céelnique
for implementing such transformations with beam—splittevices

any guantum operation can be broken down and implemented inis presented in [16], with the result that simply performithds

terms of a small set of universal gates. Hence our SQRAM machi
only provides operations corresponding to these univegeal and
it is the job of the compiler to perform the decomposition.isTh

stage could bring arbitrary operations closer to beingsable.
We will not go deeply into the mathematics involved as it
can become reasonably complicated; for a coverage of tleis se

decomposition is a complex process and work has been dorte on i[16, 15, 9]. It has been observed [9] that such a process will d

by a variety of different people and research groups. Weglttirs
work together to form a complete compilation process angigeo
an analysis of its efficiency.

compose the original matrix into at mo%‘,f;—l) two level matrices.
However, no analysis of the efficiency of such an algorithns wa
provided and it is a useful result to determine this. In [1&]wake

some assumptions about the efficiency of variations and shew
complexity to be approximatel®(n°). This is clearly not a fast
algorithm, and it should be noted that the previous analysis
with respect to the size of the matrix (which is exponentiaihie
size of the system). Hence the algorithm requires expaalemtie
overall, but it should also be remembered that it will tyfiiche
operating on small values ef, corresponding to a small number of
qubits. Also, the difficulty in performing this decomposiiimakes

it clear that it is necessary to have a quantum byte—codehwd@in
be stored as it too difficult to generate in real time.

5.5.3 Generating Controlled Unitary and CNOT Gates

We obtain from the previous stage a set of two level unitaryrima
ces, for example a matrix of the form:

a 0 0 ~v
0100

U=|lo 01 0 @
30 0 o

Barencoet al. make the observation that for any unitary matrix
U of side length2 (i.e. operating on a single qubit) it is possible to
find 3 more unitary matriceg!, B, andC such that:

AxBxC=1
and:

SXxAXx NOT x Bx NOT xC=U
whereS is defined as:

e’ 0
s=|% o]

A controlled—S gate can be simulated by a unitary operator
E acting on the control bit, hence it is possible to produce an
implementation of an arbitrary operatbr using a circuit such as
the one shown in Figure 9. For unitary gates controlled bytipial
qubits the procedure is similar; we find a set of unitariesciizan
either implement the original unitary matrix or can implerhthe

A matrix such as this acts on two components of the system (in identity matrix, depending on the use of CNOT gates in betwee

this particular case it acts df0)and|11)), and leaves the other
components unaffected as follows:

100) o[00) + 7 [11)

01 01

I10§ g Iloi ®)
1) 3100) + 6 [11)

We wish to implement this matrix in terms of a controlled
single qubit operation, or Controlled—U gate, but note thaingle
qubit operation cannot act on bofh0) and|11) as they differ by

However the actual process of generating both the gateshand t
sequence of CNOTSs is considerably more complex (see [1, 15])

Y
5]

By

Figure9. Implementation of an Arbitrary Unitary

The problem then becomes determining suitable values ér th

more than one bit. Therefore we use a series of CNOT gates (in operators4, B, C, andE, expressions for doing so are established

this simple case the series contains just one gate) to s\agsst
around such that the target states are adjacent to each ©kger
Controlled-U is then applied to the one bit which still difeand
the reverse series of CNOT gates is used to arrange the statles
to their original position.

To clarify this procedure, the operation given by Equatias 2
implemented by the circuit in Figure 8, whefeis the sub—matrix
of U given by:

51 e
O O

Figure8. Circuit implementing Equation 2.

Note that the CNOT gates are active when the control qubit
is |0, rather than the more conventiondl). The problem then
is how to generate the series of CNOT gates which rearrarge th
computational states in the appropriate way. A solutiomliving
the use ofGray codesis covered by [9] and a description within the
context of our compiler is provided by [15].

5.5.4 Implementing Controlled Unitary Gates

The output from the procedure described in Section 5.5.3 con
sists of two types of gates; Controlled—NOT gates and Ctette

U gates. Our SQRAM machine is able to directly imple-
ment Controlled—NOT gates through the CNOT instructiort, bu
Controlled-U gates require further decomposition. Thistiea
shows briefly how this is done, building on work presented by
Barencoet al. in [1].

in [1] though we will not re—iterate them here.

6. Conclusionsand Future Work

In this work we have presented an architecture for quantum- co
putation, studied quantum programming languages and rblir
tionship to our architecture, and looked at the issues uain
compiling quantum languages to byte—code.

We began by presenting a quantum computer based on the
QRAM architecture originally suggested by Knill. We desidrthe
instruction set and method of operation for the classicaimment
such that it could be used as a stand-alone processor or as a
control mechanism for a quantum component. We then designed
the quantum component with an instruction set which makes it
universal for quantum computation we allow data to be passed
between the two components.

After studying the low level byte—code programs which can be
written directly on the SQRAM machine we studied higher leve
languages and the advantages of using them to write quaritum a
gorithms. The general ideas surrounding quantum languages
discussed and we then provided a brief comparison of theresat
available in several of the languages available today.

We then moved on to the issue of generating instructions for
our SQRAM machine based on a program written in QPL. Part of
this involved creating ‘code templates’ for the variousstoncts in
the QPL language, and part of it involved decomposing coxnple
operations into those suitable for our SQRAM model. Thisodec
position process was based on work by various people butalue t
space limitations we avoided going too deeply into the nrattes
involved.

We consider the work carried out to date to be a great success
but there is the potential for much more work to be done. Soime o
the ideas presented here have been started and are alresadygh
promise.

6.1 SQRAM Model and Simulator

We stated that the instruction set provided was universajdan-
tum computing; that is not to say it cannot be improved. Tlaeee
different universal sets available and there are also ddgan to
having a certain amount of redundancy (as with the GATE iastr
tion). An analysis of the advantages and disadvantagedfefetit
instruction sets could yield a more efficient SQRAM archHitee.
There is also scope for expanding the classical instrusgbas the
current one is just a proof—of—concept allowing us to focughe
quantum work. More sophisticated conditional control estants
(as opposed to simply using the JUMPZ instruction) woule:¢hs
development of complex control structures and a greateyeram
instructions for manipulating classical data would alsdéegirable.
A discussion of the actual physics involved in building amua

tum computer has been avoided in this paper and, as far als poss

ble, in the SQRAM model. In practice there are many real asi

aspects which would affect a SQRAMs behaviour. For example,

when using the ion trap technique [4] it is easier to perfopara-
tions on multiple qubits if they are adjacent to each othevoluld
be interesting to integrate such constraints into the model

A related idea is to model the effects of ‘quantum decoherenc

on the SQRAM machine. Quantum decoherence is the process

of errors arising due to undesirable interaction with areexl!
system (something which is impossible to avoid in practi@ée
QPL language was designed for ‘perfect’ hardware in whiathsu
interactions do not occur but, given the impossibility oflthing
such hardware, it would be useful to introduce errors inte th
results of the simulation so that techniques for combathet

can be developed. Existing methods can also be tested aind the

effectiveness determined within the context of the QPL/3®R
system.

Lastly, the tools developed so far have been for our ownriader
research purposes. They are slightly obscure, commardaffiairs
which require a degree of inside knowledge to use effegtivdke
feel that it would be beneficial to the larger research comtyui

these tools could be more widely used and to this end we intend

to refine the tools and provide them with a more friendly and
intuitive user interface. There are plans to develop théstimto a
complete environment for the development and testing ofitquna
algorithms.

6.2 TheQPL Compiler

One of the distinguishing features of the QPL language isfcst
type checking system which allows certain errors to be detec
at compile time rather than run time. For example, the stgpie

system is able to enforce the no—cloning principle of quantu

mechanics within QPL programs. We have not yet implemented

such static type checking within our compiler but aim to dingbe
near future. This should look at type checking issues whaking
with more complex quantum structures (lists, trees, etd)culd
also consider type checking within the higher—order versicQPL
currently being worked on by Peter Selinger.

More generally, the compiler needs work to make it more ‘com-
plete’. It implements only a subset of QPL, the focus being on
those parts which were necessary to test ideas presented yat
per. More work on the classical control structures wouldoéna
wider range of programs to be implemented and better date-str
tures (currently only limited support for lists is availeplould
allow more interesting algorithms. We also plan to exterddbim-
piler with features for concurrency and communicationddssed
next).

6.3 Communication and Concurrency

Although it has not been described in this paper we have also u
dertaken some work to integrate constructs for commuricatnd

concurrency into the QPL language and SQRAM simulator. &hes
changes to QPL have yielded a new language, CQP [7], which
is able to describe algorithms such as quantum key exchardje a
guantum teleportation. We aim to integrate this into our piben;

the simulator has already had such support added.

References

[1] A. Barenco, C. Bennett, R. Cleve, D. Divincenzo, N. Mdzo
P. Shor, T. Sleator, J. Smoli, and H. Weinfurter. Elemenggtes for
guantum computatiorSubmitted to Physical Review A, 1995.

[2] S. Bettelli, T. Calarco, and L. Serafini. Toward an arebitire for
guantum programmingThe European Physical Journal, 25(2):181—
200, 2003.

[3] P. E. Black and A. W. Lane. Modeling quantum informatigistems,
2004. Unpublished.

[4] J. Cirac and P. Zoller. Quantum computations with caégbpred ions.
Physical Review Letters, 74:4091, 1995.

[5] R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca. Quantu
algorithms revisited Submitted to Phil. Trans. R. Soc. Lond. A, 1997.

[6] R. Feynman. Simulating physics with computersiternational
Journal of Theoretical Physics, 21(6&7):467-488, 1982.

[7] S. Gay and R. Nagarajan. Communicating quantum prosesse
POPL ' 05: Proceedings of the 32nd ACM Symposium on Principles
of Programming Languages, Long Beach, California, January 2005.

[8] E. Knill. Conventions for quantum pseudocode, 1996.

[9] M. Nielson and I. Chuang.Quantum Computation and Quantum
Information. Cambridge University Press, 2000.

[10] B. Omer. A procedural formalism for quantum computitg98.
[11] N. Papanikolaou.QSPEC A programming language for quantum
communication systems design. Rroceedings of PREP2004
Postgraduate Research Conference in Electronics, Photonics,

Communications & Networks, and Computing Science. EPSRG 2004.

[12] Y. Pritzker. Simulation of quantum computation on Irtased
architectures, 1999.

[13] P. Selinger. Towards a quantum programming langubgghemati-
cal Structuresin Computer Science, 14(4):527-586, 2004.

[14] K. Svore, A. Cross, A. Aho, |. Chuang, and I. Markov. Toda
a software architecture for quantum computing design tools
Proceedings of the 2nd International Conference on Quantum
Programming Languages, pages 145-162, 2004.

[15] D. Williams. Quantum computer architecture, assentdguage and
compilation, 2004.

[16] A. Zeilinger, M. Reck, H. Bernstein, and P. Bertani. Exmental
realization of any discrete unitary operat®hysical Review Letters,
73(1):58-61, 1994.

A. Sample Simulator Output

We provide here the output of our simulator when performing a
simulation of Deutsch’s Algorithm as described in Sectich 4
Initialising QRAM machine. .. (1)
Sum of probabilities: 1.0000
(2)

Loading program. ..
Loading AQbitInstruction
Loading GatelInstruction
Loading CNotInstruction
Loading Msrelnstruction
Load succeeded

k%% QRAM Quantum State **x
1.000000 |000>

b e

Allocating new QBit
k%% QRAM Quantum State **x
1.000000 |000>

Allocating new QBit
**k QRAM Quantum State **x
1.000000 |000>

Applying Gate operation to bit 1

*xk QRAM Quantum State **x* (5)
1.000000 010>
Applying Gate operation to bit 0
x QRAM Quantum State ***
0.707100 010> +...
...0.707100 |011>
Applying Gate operation to bit 1 (6)
x QRAM Quantum State ***
0.499990 [000> +...
...0.499990 [001> +...
...=0.499990 [010> +...
...=0.499990 |011>
Applying Gate operation to bit 0
x QRAM Quantum State ***
0.499990 |000> +... 7
...0.499990 001> +... (7)
...=0.499990 010> +...
...—-0.499990 |011>
Performing CNot Instruction
Controlling: 2 Controlled: 1
In common: O
(-0.49999,0) (-0.49999,0) ...
...(0.49999,0) (0.49999,0). ..
...(0,0)(0,0)(0,0)(0,0)
(-0.49999,0) (-0.49999,0) . .. ®)
...(0.49999,0) (0.49999,0) ...
...(0,0)(0,0)(0,0)(0,0)
x QRAM Quantum State ***
-0.499990 [000> +...
...=0.499990 |001> +...
...0.499990 [010> +...
...0.499990 |011>
Applying Gate operation to bit 0
x QRAM Quantum State *** (9)

-0.707086 |000> +...
...0.707086 [010>

Measuring QBit O

Got probabilities...p0=1.000,...

...p1=0.000
Sum of probabilities: 0.99994
Normalized amplitudes: 0.99994
norm(*this)+RND_ERR =...
...0.9999424611046097144395617
norm(*this)-RND_ERR =...
...0.9999424611026097586830019

pO+pl should be between those...

...and it is 0.9999424611

Set bit state to O

x QRAM Quantum State ***
-0.707107 |000> +...
...0.707107 1010>

(10)

