
QAPL 2007

Exogenous Probabilistic Computation Tree Logic

Pedro Baltazar1,6 Paulo Mateus2,6

Security and Quantum Information Group, Institute for Telecommunications and
Instituto Superior Técnico, Universidade Técnica de Lisboa, Lisbon, Portugal

Rajagopal Nagarajan3,5 Nikolaos Papanikolaou4,5

Department of Computer Science, University of Warwick, Coventry, England

Abstract

We define a logic EpCTL for reasoning about the evolution of probabilistic systems. System states correspond to probability dis-
tributions over classical states and the system evolution is modelled by probabilistic Kripke structures that capture both stochastic
and non–deterministic transitions. The proposed logic is a temporal enrichment of Exogenous Probabilistic Propositional Logic
(EPPL). The model-checking problem for EpCTL is analysed and the logic is compared with PCTL; the semantics of the former
is defined in terms of probability distributions over sets of propositional symbols, whereas the latter is designed for reasoning
about distributions over paths of possible behaviour. The intended application of the logic is as a specification formalism for
properties of communication protocols, and security protocols in particular; to demonstrate this, we specify relevant security
properties for a classical contract signing protocol and for the so–called quantum one–time pad.

1 Introduction

There are numerous applications in science where reasoning about probabilistic behaviour is
necessary. In computing, applications include probabilistic algorithms, computer modelling
and verification of probabilistic systems, including communication protocols with and without
security guarantees. The properties of probabilistic programs in particular have been studied
before using many different approaches, and it is widely accepted that the development of
formal logics for reasoning about such programs is highly beneficial, allowing designers and
users of systems to formulate properties which the programs may or may not satisfy.

In this paper we describe a temporal probabilistic logic, EpCTL. Our approach is char-
acterised by the use of an exogenous semantics, such that the models of state formulas are

1 Email: pbtz@math.ist.utl.pt
2 Email: pmat@math.ist.utl.pt
3 Email: biju@dcs.warwick.ac.uk
4 Email: nikos@dcs.warwick.ac.uk
5 Partially supported by the EU Sixth Framework Programme (Project SecoQC: Development of a Global Network for Secure
Communication based on Quantum Cryptography).
6 Partially supported by FCT and EU FEDER, namely via CLC POCTI (Research Unit 1-601), QuantLog project
POCI/MAT/55796/2004 and the recent QSec initiative of SQIG-IT. Pedro Baltazar also supported by FCT and EU FEDER
PhD fellowship SFRH/BD/22698/2005.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

mailto:pbtz@math.ist.utl.pt
mailto:pmat@math.ist.utl.pt
mailto:biju@dcs.warwick.ac.uk
mailto:nikos@dcs.warwick.ac.uk

Baltazar, Mateus, Nagarajan, and Papanikolaou

essentially probability distributions of models of a propositional logic. We build atop earlier
work on the probabilistic state logic EPPL [24] by introducing a temporal extension; the result
is a branching time logic for reasoning about probabilistic programs. Our intention is to pro-
vide a powerful framework for specifying properties of communication protocols, especially
security protocols. The proposed logic has enough expressive power to allow specification of
relevant security properties, and enables high–level reasoning due to the use of an exogenous
semantics.

The exogenous semantics approach [25] involves taking the semantic structures of a base
logic (e.g. propositional logic) and combining them together, possibly adding new structure,
to provide the semantics for a higher-level logic. This approach has been used to build the
probabilistic state logic EPPL and also a logic EQPL for reasoning about states of quantum
information systems. The exogenous semantics approach can be considered a variant of the
possible-worlds approach of Kripke for modal logic [18], and it is related to the society se-
mantics introduced in [8] for many-valued logic and to the possible translations semantics
proposed in [7] for paraconsistent logic.

This paper is structured as follows. First we examine the syntax, semantics, model–
checking problem and axiomatisation of the state logic EPPL. We then describe each of these
aspects in turn for the temporal extension, namely the new logic EpCTL, and provide intuition
for the various constructs. Proofs of theorems have been relegated to the Appendix.

2 Logic of Probabilistic States - EPPL

The state logic of temporal logics like CTL [13], LTL [29] and CTL* [11] is classical proposi-
tional logic. Probabilistic temporal extensions, like PCTL [16], also use classical propositional
logic for state logic. Here we consider quite a different state logic, exogenous probabilistic
propositional logic (EPPL) [23,25,9,24], which was highly inspired by the works of Halpern
et al. [15]. Given the envisaged application to model–checking, we consider only models over
a finite set of propositional symbols Φ, which can be understood as Boolean registers (bits)
that constitute the internal state of a protocol or an algorithm. In this setting an EPPL model,
that henceforth we will call a probabilistic structure, is a pair (V,µ) where V is a set of classi-
cal valuations 7 over Φ and µ is a map µ : V → [0,1] where ∑v∈V µ(v) = 1. For a model (V,µ)
we call V the set of possible valuations, and µ the probability measure. Observe that µ can be
extended to all valuations by assuming that impossible valuations are improbable, i.e, µ(v) = 0
for any v ∈ V \V where V is the set of all valuations over Φ. Finally, it will be useful to
consider the probability measure 8 , where µ is defined over sets of valuations, (V ,2V ,µ) and
µ(U) = ∑v∈U µ(v) for any U ⊆ V .

Example 2.1 Consider a variant of the Russian roulette game, where the gambler tosses a
coin and if the outcome is heads, the gun is fired. Assume also that the gambler has 1/6
probability of shooting a bullet. We describe the system with three propositional symbols
h (heads), b (bullet was shot), d (gambler is dead). The possible valuations described as sets of
propositional symbols are: /0 (all propositional symbols are false, the outcome of the coin was
not heads); {h} (the outcome of the coin was heads but no bullet was shot); and {h,b,d} (the

7 Recall that a classical valuation over Φ is a map v : Φ→{0,1}.
8 Recall that a probability measure is a triple (Ω,F ,µ) where F is a σ-algebra over Ω and µ is a measure where µ(Ω) = 1. Given
the finitary assumption over Φ, in this paper we will always have Ω to be V and F to be the powerset of V .

2

Baltazar, Mateus, Nagarajan, and Papanikolaou

outcome of the coin was heads, a bullet was shot and the gambler is dead). The probability
measure is µ(/0) = 1/2, µ({h}) = 5/12 and µ({h,b,d}) = 1/12.

We continue by describing the syntax of the logic.

2.1 Language

The language consists of formulas at two levels. The formulas at the first level, classical
formulas, enable reasoning about propositional symbols. The formulas at the second level,
probabilistic state formulas, enable reasoning about probabilistic structures. There are also
probability terms used in probabilistic state formulas to denote real numbers. The syntax of
the language, expressed using BNF notation, is as follows.

• Classical formulas
γ := Φ8⊥8 (γ⇒ γ)

• Probability terms
p := 0818 y8 (

R
γ)8 (p+ p)8 (p p)

• Probabilistic state formulas
ξ := (2γ)8 (p≤ p)8⊥⊥8 (ξ⊃ξ)

The classical state formulas, ranged over by γ,γ1, . . ., are built from the propositional sym-
bols Φ and the classical disjunctive connectives ⊥ (falsum) and ⇒ (implication). As usual,
other classical connectives (¬,∨,∧,⇔) are introduced as abbreviations. For instance, (¬γ)
stands for (γ⇒⊥).

The probability terms, ranged over by p, p1, . . ., denote elements of the reals. We also
assume a set of variables, Y = {yk : k ∈ N}, ranging over the reals. The term (

R
γ) denotes the

measure of the set of valuations that satisfy γ.
The probabilistic state formulas, ranged over by ξ,ξ1, . . ., are built from the necessity for-

mulas (2γ), the comparison formulas (p1 ≤ p2) and the connectives ⊥⊥ and ⊃. The formula
(2γ) is true when γ is true of every possible valuation in the semantic structure. Other proba-
bilistic connectives (,∪,∩,≈) are introduced as abbreviations. For instance, (ξ) stands for
(ξ⊃⊥⊥). We shall also use (3γ) as an abbreviation for ((2(¬γ))). Please note that the 2

and 3 are not modalities 9 . We also use any algebraic real number as a constant since the lan-
guage of EPPL has enough expressiveness to specify these constants. For instance,

√
2 ≤ y1

can be written as (y2y2 = (1 + 1)∩ y2 ≥ 0)⊃ y2 ≤ y1. We will use subtraction and division
freely since they can also be expressed in EPPL, for instance x/y = −2 can be written as
((z+(1+1) = 0)∩ ((y = 0)))⊃ x = y · z. Finally, the conditional probability term (

R
γ1|γ2)

is an abbreviation of (
R

(γ1∧ γ2))/(
R

γ2).
The notion of occurrence of a term p and a probabilistic state formula ξ1 in the probabilistic

state formula ξ can be easily defined. The notion of replacing zero or more occurrences of
probability terms and probabilistic formulas can be similarly defined. For the sake of clarity,
we shall often drop parentheses in formulas and terms if it does not lead to ambiguity.

Example 2.2 Consider again the variant of the Russian roulette described in Example 2.1.
Stating that the coin is fair can be expressed by (

R
h = 1/2). We can also say the bullet is

shot only if the outcome of the coin is heads by 2(b⇒ h). Similarly, the gambler is dead
only if the outcome of the coin toss is heads and the bullet is shot, which can be expressed

9 We do not have formulas such as 2(2γ).

3

Baltazar, Mateus, Nagarajan, and Papanikolaou

by 2(d⇒ b∧ h). Finally, the fact that the probability of the bullet being shot is 1/6 can be
captured by (

R
b|h) = 1/6.

2.2 Semantics

Given V ⊆ V , the extent of a classical formula γ in V is defined as |γ|V = {v ∈ V : v c γ},
where c is the satisfaction relation for classical propositional logic. For interpreting the
probabilistic variables, we need the concept of an assignment. An assignment ρ is a map such
that ρ(y) ∈ R for each y ∈ Y.

Given a probabilistic structure (V,µ) and an assignment ρ, the denotation of probabilistic
terms and satisfaction of probabilistic state formulas are defined inductively as follows.

• Denotation of probability terms
· [[0]]ρ(V,µ) = 0

· [[1]]ρ(V,µ) = 1

· [[y]]ρ(V,µ) = ρ(y)
· [[(

R
γ)]]ρ(V,µ) = µ(|γ|V)

· [[p1 + p2]]
ρ

(V,µ) = [[p1]]
ρ

(V,µ) +[[p2]]
ρ

(V,µ)

· [[p1 p2]]
ρ

(V,µ) = [[p1]]
ρ

(V,µ)× [[p2]]
ρ

(V,µ)
• Satisfaction of probabilistic formulas
· (V,µ)ρ (2γ) iff vc γ for every v ∈V
· (V,µ)ρ (p1 ≤ p2) iff V 6= /0 implies ([[p1]]

ρ

(V,µ) ≤ [[p2]]
ρ

(V,µ))
· (V,µ)ρ 6⊥⊥
· (V,µ)ρ (ξ1⊃ξ2) iff (V,µ)ρ ξ2 or (V,µ)ρ 6 ξ1

The formula (2γ) is satisfied only if all v ∈V satisfy γ. The formula (p1 ≤ p2) is satisfied
if the term denoted by p1 is less than p2. The formula (ξ1⊃ξ2) is satisfied by a semantic model
if either ξ1 is not satisfied by the model or ξ2 is satisfied by the model. Entailment is defined
as usual: Ξ entails ξ (written Ξ � ξ) if (V,µ)ρ ξ whenever (V,µ)ρ ξ0 for each ξ0 ∈ Ξ.

Please note that an assignment ρ is sufficient to interpret a useful sub-language of proba-
bilistic state formulas:

κ := (a≤ a)8⊥⊥8 (κ⊃κ)

a := 0818 x8 (a+a)8 (aa).

Henceforth, the terms of this sub-language will be called analytical terms and the formulas
will be called analytical formulas.

2.3 Model–checking EPPL

For the model–checking procedure we assume that the probabilistic structure and assignment
are represented using a floating point data structure. We assume that a probabilistic structure
(V,µ) for Φ propositional symbols is modelled by a V -array of real numbers; the size of V is
at most 2n with n = |Φ|. We also assume that the basic arithmetical operations take O(1) time.
Moreover, we assume that we use only a finite number of variables Y and that assignment is a
vector of real number of size |Y|.

We also assume the definition of the length of a classical formula γ or a probabilistic
formula ξ as the number of symbols required to write the formula. The length of a formula ξ

4

Baltazar, Mateus, Nagarajan, and Papanikolaou

(classical or probabilistic) is given by |ξ|.
Given a probabilistic structure (V,µ), assignment ρ and a probabilistic formula ξ, the first

step is to evaluate all the terms occurring in ξ. For the probability terms
R

γ, the evaluation
takes |V | · |γ| steps as we check the set of valuations that satisfy γ. Once the terms are evaluated,
the model–checking algorithm is straightforward.

Theorem 2.3 Assuming that all basic arithmetical operations take unit time, there is an algo-
rithm O(|ξ| · |V |) to decide if a probabilistic structure over Φ and an assignment ρ satisfy ξ.

Proof. First notice that the terms that take longer to evaluate are those of the type (
R

γ) and
(2γ). The number of terms of type (

R
γ) is bounded by |ξ|. To evaluate one of these terms we

require O(|V |) time corresponding to traveling throughout all the valuations satisfying γ and
summing all the associated probabilities. So, computing all (

R
γ) terms takes O(|ξ|.|V |) time.

The same expression will be obtained to check the satisfaction of (2γ).
After these values are obtained, the remaining computation (comparing terms, negating a

boolean value, and making implications between boolean values) takes at most O(|ξ|) time.
Hence, the total time to decide if a if a probabilistic structure over Φ and an assignment ρ

satisfy ξ is O(|ξ|.|V |+ |ξ|) = O(|ξ|.|V |). 2

Clearly, since in the worst case the probability distribution will span all possible valuations,
we have |V |= 2n where n = |Φ|. Observe that in many cases the set of possible valuations is
small and it is possible to describe this set in a compact manner, as well as the probabilities
associated, we will return to this discussion when we discuss the model–checking procedure
of the temporal extension of the logic.

2.4 Axiomatisation of EPPL

The axiomatisation of the EPPL logic presented here relies entirely on that in [9] and will be
presented in a summarised way. We need two new concepts for the axiomatisation, namely the
notions of probabilistic tautology and of valid analytical formulas.

Consider propositional formulas built from a countable set of propositional symbols Q
using the classical connectives⊥ and→. A probabilistic formula ξ is said to be a probabilistic
tautology if there exists a propositional tautology β over Q, and a map σ from Q to the set
of probabilistic state formulas, such that ξ coincides with βpσ (where βpσ is the probabilistic
formula obtained from β by replacing all occurrences of⊥ by⊥⊥,→ by⊃ and q∈Q by σ(q)).
For instance, the probabilistic formula ((y1 ≤ y2)⊃ (y1 ≤ y2)) is tautological (obtained, for
example, from the propositional tautology q→ q).

As noted in Section 2.2 an assignment is enough to interpret all analytical formulas. We
say that κ is a valid analytical formula if for any real closed field K and assignment ρ, κ

is true for ρ. Clearly, a valid analytical formula holds for all semantic structures of EPPL.
It is a well-known fact from the theory of quantifier elimination [17,3] that the set of valid
analytical formulas so defined is decidable over algebraic ordered fields. Moreover, since the
real numbers consitute a representative model of algebraic ordered fields (that is, if there exists
a solution for a systems of inequations written with the terms of EPPL in an algebraic order
field, there is also a solution for the real numbers), the decidability result extends over the
real numbers. We shall not go into details of this result as we want to focus exclusively on
reasoning about probabilistic aspects.

The axioms and inference rules of EPPL are listed below.

5

Baltazar, Mateus, Nagarajan, and Papanikolaou

• Axioms
· [CTaut] ` (2γ) for each valid formula γ;
· [PTaut] ` ξ for each probabilistic tautology ξ

· [Lift⇒] ` ((2(γ1⇒ γ2))⊃ (2γ1⊃2γ2))
· [Eqv⊥] ` ((2⊥)≈⊥⊥)
· [Ref∧] ` (((2γ1)∩ (2γ2))⊃ (2(γ1∧ γ2)))

· [RCF] ` κ{|~y/~p|} where κ is a valid analytical formula,~y and ~p are sequences
of probability variables and probability terms respectively

· [Meas /0] ` ((
R
⊥) = 0)

· [FAdd] ` (((
R
(γ1∧ γ2)) = 0)⊃ ((

R
(γ1∨ γ2)) = (

R
γ1)+(

R
γ2)))

· [Prob] ` ((
R
>) = 1)

· [Mon] ` ((2(γ1⇒ γ2))⊃ ((
R

γ1)≤ (
R

γ2)))
• Inference rules
· [CMP] (2γ1),(2(γ1⇒ γ2)) ` (2γ2)
· [PMP] ξ1,(ξ1⊃ξ2) ` ξ2

The axiom CTaut says that if γ is a valid classical formula then (2γ) is an axiom. The
axiom PTaut says that a probabilistic tautology is an axiom. Since the set of valid classical
formulas and the set of probabilistic tautologies are both recursive, there is no need to spell
out the details of tautological reasoning.

The axioms Lift⇒, Eqv⊥ and Ref∧ are sufficient to relate (local) classical state reasoning
and (global) probabilistic tautological reasoning.

The term κ{|~y/~p|} in the axiom RCF is the term obtained by substituting all occurrences
of yi in κ by pi. The axiom RCF says that if κ is a valid analytical formula, then any formula
obtained by replacing variables with probability terms is a tautology. We refrain from spelling
out the details as the set of valid analytical formulas is recursive.

The axiom Meas /0 says that the measure of empty set is 0. The axiom FAdd is the finite
additivity of the measures. The axiom Mon relates the classical connectives with probability
measures and is a consequence of monotonicity of measures. The axiom Prob says that the
measure is a probability measure.

The inference rules CMP and PMP are the modus ponens for classical and probabilistic
implication respectively.

As usual we say that a set of formulas Γ derives ξ, written Γ` ξ, if we can build a derivation
of ξ from axioms and the inference rules using formulas in Γ as hypothesis.

Theorem 2.4 EPPL is sound and weakly complete. Moreover, the set of theorems is recur-
sive.

Proof. The result follows from the fact that EPPL logic present here is a sublanguage of that
presented in [9], for which the corresponding axiomatisation is proved to be sound and weakly
complete. Hence, for further details look at [9]. 2

6

Baltazar, Mateus, Nagarajan, and Papanikolaou

3 The Computation Tree Extension - EpCTL

In this section we define the computation tree extension to EPPL, which we call exogenous
probabilistic computation tree logic (EpCTL). The idea is to consider several probabilistic
structures together with a transition relation between them, in other words, a Kripke structure
whose nodes are probability structures. This structure is particularly interesting for two rea-
sons. Firstly, it captures the idea, which arises in the study of probabilistic transition systems,
that the state space should be described as a distribution of classical states [30,14,9]. Secondly,
it is a step towards reasoning about quantum systems, since in such systems a state is described
as a probabilistic ensemble of pure quantum states (cf. mixed states, density operators). We
will explore both aspects in Section 4 by presenting two detailed examples.

We proceed to present the syntax of EpCTL.

3.1 Syntax

The syntax of EpCTL can be easily obtained from the syntax of EPPL. The idea is that at the
level of probabilistic state formulas, we also introduce the usual CTL modalities. For the sake
of clarity, we recall the definition of classical formulas and probability terms.

• Classical formulas
γ := Φ8⊥8 (γ⇒ γ)

• Probability terms
p := 0818 y8 (

R
γ)8 (p+ p)8 (p p)

• Exogenous probabilistic computation tree logic formulas
· δ := (2γ)8 (p≤ p)8⊥⊥8 (δ⊃δ)8 (EXδ)8 (AFδ)8 (E[δUδ])

The intuitive semantics of the temporal modalities is similar to that in classical CTL. The
modalities are composed by two symbols, where the first one is chosen among E or A, and the
second one among X, F, G and the bi-modality U. The second symbol is used for temporal
reasoning: X stands for next; F for sometime in the future; G for always in the future; and U
for until. The first symbol quantifies over all computation paths: an existential (E - for there
exists) path or a universal (A - for all) paths. The combination of the two symbols can be easily
understood. For example, the formula EXδ holds in a probability structure (V, p) if there exists
a next structure of (V, p) (that is, a structure reachable from (V, p) with a single transition) that
satisfies δ. As usual, all CTL modalities are obtained as abbreviations from EX,AF and EU.

• (AXδ) for 	EX(δ);
• (EFδ) for 	(E[(⊥⊥)Uδ]);
• (AGδ) for 	(EF(δ));
• (EGδ) for 	(AF(δ));
• A[δ1Uδ2] for 	(E[(δ2)U(δ1∩�δ2)])∩ ((EG(δ2))).

Example 3.1 Consider again the Russian roulette variant from Example 2.1 together with
some temporal primitives. First, we will like to state that the bullet can not be shot before the
outcome of the coin is heads, which can be expressed as A[((

R
b) = 0)U((

R
h) > 0)]. Suppose

that the gambler is always playing this game alone, clearly the probability of killing himself
tends asymptotically to 1, we can capture this statement with ((x < 1)⊃AF((

R
d) > x)).

7

Baltazar, Mateus, Nagarajan, and Papanikolaou

3.2 Semantics

A probabilistic Kripke structure is a pair (P ,R) where P is a set of probabilistic structures and
R ⊆ P ×P is a total transition relation, that is, for any (V,µ) ∈ P there exists (V ′,µ′) such
that (V,µ) R (V ′,µ′). The notion of probabilistic Kripke structure is very general, and, as we
shall see, it is capable of capturing Markov transitions (and more) as well as systems with both
non–deterministic and probabilistic transitions.

Example 3.2 Consider the Russian roulette from Example 2.1, and consider that the gambler
plays the game twice and then, if alive, halts. The probabilistic Kripke structure is such that
all probability structures involved have the set of admissible valuations V = { /0,{h},{h,b,d}}.
Assume that the initial distribution µ0 is µ(/0) = 1. The probability distribution over V evolves
accordingly to the following stochastic matrix

M =

1
2

5
12

1
12

1
2

5
12

1
12

0 0 1

so, assuming that the gambler’s only choice is to play twice and then halt if alive, we have that
µ0 R µ1 and µ1(/0) = 1/2,µ1({h}) = 5/12 and µ1({h,b,d}) = 1/12; moreover, µ1 R µ2, with
µ2(/0) = 11/24,µ2({h}) = 55/144 and µ2({h,b,d}) = 23/144; and finally µ2 R µ2.

The interpretation of probabilistic terms is defined as before. The satisfaction of a temporal
formula is defined over a probabilistic Kripke structure (P ,R), a probabilistic structure (V,µ)∈
P and an assignment ρ.

• (P ,R),(V,µ),ρ (2γ) iff (V,µ),ρ (2γ);
• (P ,R),(V,µ),ρ (p1 ≤ p2) iff (V,µ),ρ (p1 ≤ p2);
• (P ,R),(V,µ),ρ 6⊥⊥;
• (P ,R),(V,µ),ρ (δ1⊃δ2) iff (P ,R),(V,µ),ρ 6 δ1 or (P ,R),(V,µ),ρ δ2;
• (P ,R),(V,µ),ρ (EXδ) iff (P ,R),(V ′,µ′),ρ δ with (V,µ)R (V,µ);
• (P ,R),(V,µ),ρ (AFδ) iff for all path π over R starting in (V,µ) there exist k ∈N such that

(P ,R),πk,ρ δ;
• (P ,R),(V,µ),ρ (E[δ1Uδ2]) iff there exist path π over R starting in (V,µ) and k ∈ N such

that (P ,R),πk,ρ δ2 and (P ,R),πi,ρ δ1 for every i≤ k;

where πi denotes the i-element of the path π.
We say that (P ,R) δ iff (P ,R),(V,µ),ρ δ for all (V,µ) ∈ P and assignment ρ.

Example 3.3 Consider the probabilistic Kripke structure (P ,R) of Example 3.2. The structure
satisfies the property that the probability of dying is non decreasing, that is, (P ,R) (((

R
d) =

x)⊃ (AG((
R

d)≥ x))).

The relation of EpCTL to PCTL

EpCTLis related to the logic PCTL proposed by Hansson and Jonsson [16]. The PRISM
tool [19,20] is a symbolic model-checker for PCTL. There is a fundamental difference between
the semantics of EpCTL and PCTL; whereas PCTL enables reasoning about distributions

8

Baltazar, Mateus, Nagarajan, and Papanikolaou

over paths in a probabilistic transition system, EpCTL is designed for reasoning about how
a probability distribution over a finite set of propositional symbols changes over time. The
latter approach is particularly advantageous for reasoning about certain types of systems, such
as distributed randomised algorithms. Depending on the application, it can be better or worse
to model a given property using distributions over paths or over the propositional symbols,
since both approaches are valid, but quite different. Hence, the PCTL formula AG>qϕ states
that, for any choice of the scheduler, the measure of paths satisfying Gϕ is greater than q. On
the other hand the EpCTL formula AG(

R
ϕ > q) means that for any choice of the scheduler,

all the state distributions reached are such that the probability of ϕ holding is greater than q.
Given that in PCTL the probabilities are endogenous in the modalities, it does not seem to be
possible to express some more sophisticated types of property, such as: AG((

R
ϕ1 ·

R
ϕ2) > q).

It is possible to devise a mapping from probabilistic transition systems to probabilistic Kripke
structures using a construction that involves blind schedulers, but we will not elaborate on this
here. Investigating the connections between the semantics of EpCTL and of other logics is
certainly a direction for future work.

3.3 Model–checking EpCTL

We now address the problem of model–checking a temporal formula. Following the usual
model–checking technique for CTL, the goal is to compute the set

Sat(P ,R),ρ(δ) := {(V,µ) ∈ P : (P ,R),(V,µ),ρ δ}

for a probabilistic Kripke structure (P ,R), assignment ρ and formula δ. This is called the
global model–checking problem. Before presenting the model–checking algorithm, it is use-
ful to introduce some notation for relations, namely in the context of a probabilistic Kripke
structure (P ,R). We denote by R−1 the inverse relation of R, that is, (V,µ)R−1(V ′,µ′) iff
(V ′,µ′)R(V,µ). Given a set of probabilistic strucutures X ⊆ P , we denote by RX the set
{(V,µ) ∈ P : there exists (V ′,µ′) ∈ X such that (V ′,µ′)R(V,µ)}. We are now able to present a
model–checking algorithm, adapted from the usual algorithm for CTL:

(i) Sat(P ,R),ρ(2γ) = {(V,µ) ∈ P : (V,µ),ρ (2γ)};

(ii) Sat(P ,R),ρ(p1 ≤ p2) = {(V,µ) ∈ P : (V,µ),ρ (p1 ≤ p2)};

(iii) Sat(P ,R),ρ(δ1⊃δ2) = (P \Sat(P ,R),ρ(δ1)∪Sat(P ,R),ρ(δ2);

(iv) Sat(P ,R),ρ(EXδ) = R−1Sat(P ,R),ρ(δ);

(v) Sat(P ,R),ρ(AFδ) = FixedPoint[λX .F(AFδ)(X),Sat(P ,R),ρ(δ)] with

F(AFδ)(X) = X ∪{(V,µ) ∈ P : R{(V,µ)} ⊆ X};

(vi) Sat(P ,R),ρ(E[δ1Uδ2]) = FixedPoint[λX .FE[δ1Uδ2](X),Sat(P ,R),ρ(δ2)] with

FE[δ1Uδ2](X) = X ∪ (Sat(P ,R),ρ(δ1)∩R−1X).

In general, a probabilistic Kripke structure requires exponential space (over the number
of propositional symbols) due to the exponential spanning of probabilities on the distribution
over the valuations. For this reason, the model–checking algorithm takes exponential time
on the number of propositional symbols, but it is polynomial on the size of the probabilistic
Kripke structure and the complexity of the formula.

9

Baltazar, Mateus, Nagarajan, and Papanikolaou

Theorem 3.4 Assuming that all basic arithmetical operations take unit time, the model–checking
algorithm for EpCTL takes O(|δ|2 · |P |2 ·2n) time for inputs (P ,R),ρ and δ, where δ is written
with n propositional symbols.

Proof. The propositional CTL model–checking algorithm takes O(|δ| · |P |2) (see [10] for a
detailed analysis). So, if we consider each (2γ) and p1 ≤ p2 to be a propositional symbol,
the time complexity of the algorithm would be O(|δ| · |P |2). Finally, since checking if these
formulas are satisfied by a (P ,µ) and ρ takes O(|δ| · 2n) (c.f. Theorem 2.3) we derive the
desired upper bound. Recall that we consider all arithmetic computations to be O(1) by using
floating point representation for the real numbers. 2

It is well known that a slightly better algorithm can be obtained if EG is taken as a basic
modality instead of AF, but we refrain from doing so here. Although the algorithm is expo-
nential in the worst case, it assumes that a probability distribution over valuations is encoded
as a vector of probabilities. Clearly, for particular relevant cases, there are much more efficient
and compact encodings; we are currently investigating which probability distributions can be
encoded efficiently.

4 Illustrative Examples

In order to demonstrate the expressiveness of EpCTL, we consider a couple of examples from
the literature, starting with a model of the contract-signing protocol due to Ben-Or et al. [6].
We then consider a simple example of a protocol from the area of quantum cryptography, the
quantum one–time pad [1], noting that this particular protocol may be modelled entirely in a
probabilistic setting, and its properties formalised in a classical probabilistic (as opposed to
specifically quantum) formalism.

4.1 A Contract Signing Protocol

The problem of contract signing is to find a way of getting two users, A and B, to commit to
a contract C in such a way that neither party may falsely convince the other that the former
has signed. In other words, A and B must sign the contract together, without one party gaining
any advantage over the other. The traditional solution to the problem is for A and B to sign C
simultaneously, but this is only possible if A and B are in physical proximity. Assuming that
A and B are spatially separated, the only way for contract signing to be achieved is through a
communication protocol, although it is likely that, at different stages of such a protocol, one
party will have a relative advantage over the other. The objective of a “fair” contract signing
protocol, such as the one proposed by Ben-Or et al. [6] (henceforth referred to simply as
the BGMR protocol) is to constrain this relative advantage so that it remains within specific
bounds tolerated and agreed upon by both users.

The BGMR protocol assumes the setting of a network of users (we focus only on the two
user case) with a signature scheme in operation. Only user U is assumed capable of producing
U’s signature on message m (unforgeability) and any other user is assumed capable of verifying
the validity of U’s signature on m (universal verifiability). The protocol assumes that neither
user A nor user B wants to be committed to contract C unless the other user is, and makes
it possible for A and B to sign C by exchanging commitments. The notion of fairness for
the protocol is defined as the property that, the conditional probability with which “B is not

10

Baltazar, Mateus, Nagarajan, and Papanikolaou

privileged” given that “A is privileged” is always small. Formally, the BGMR protocol is said
to be (v,ε)–fair, this being defined as follows.

Definition 4.1 A contract signing protocol is (v,ε)–fair for A if the following holds, for any
contract C , when A follows the protocol properly: At any step of the protocol in which the
probability that “B is privileged” is greater than v, the conditional probability that “A is not
privileged” given that “B is privileged” is at most ε.

If A and B are assumed to be dishonest, then a third party – a judge – must be invoked
during the protocol in order to provide an independent judgement as to whether the contract
is to be considered binding for both users. During the protocol, A and B exchange signed
messages of the following form:

m = (C, p,U) = “ With probability p, the contract C shall be valid. Signed, User U . ”

When message m is received, the recipient is said to be privileged with probability p, meaning
that invocation of the judge will result in him ruling that contract C is binding to A and B with
probability p. If the protocol does not terminate successfully by a pre–agreed date D, one of
the two users invokes an early stopping procedure.

We are now ready to state the BGMR protocol in detail. Steps 1–5 are for initialization of
protocol parameters.

(i) Parties A and B agree who goes first and set a termination date D. We assume that A is
to go first.

(ii) Party A chooses the conditional probability v that “B is privileged” while “A is not privi-
leged.”

(iii) Party A chooses the parameter α > 1 such that, the conditional probability that “A is
privileged” given that “B is privileged” is at least 1

α
.

(iv) Party B chooses β > 1 such that, the conditional probability that “B is privileged” given
that “A is privileged” is at least 1

β
.

(v) The protocol is initialised with λA = λB = 0. The symbol λA stores the probability men-
tioned in the message last sent from A, and similarly λB stores the probability mentioned
in the message last transmitted from B.

(vi) A and B perform the following procedures alternately:
A-step. User A denotes the probability mentioned in the last message received by p. A

then checks whether p > λA. If so, then A sets λA := max(v,min(1, p ·α)). Otherwise,
A assumes the protocol has been terminated. A then transmits message (C ,λA,A) to
B.

B-step. User B denotes the probability mentioned in the last message received by p. B
then checks whether p > λB. If so, then B sets λB := min(1, p · β). Otherwise, B
assumes the protocol has been terminated. B then transmits message (C ,λB,B) to B.

The details of the judge’s procedure, and of the early stopping procedure, are to be found
in [6]. An analysis of the protocol has been performed using the PRISM model-checker by
Norman and Shmatikov [27].

The essential point about the BGMR protocol is that it ensures a specified degree of fair-
ness, characterised by the constants v and ε. At the end of the protocol, both parties need to be
privileged. We formalise the notion of (v,ε)–fairness using EpCTL in what follows.

We establish the set Φ = {ϕA,ϕB} of propositional constants, where ϕA corresponds to the

11

Baltazar, Mateus, Nagarajan, and Papanikolaou

truth of the event “A is privileged,” and similarly ϕB is true if “B is privileged.” To express the
fairness property, we regard the protocol parameter ε as a real variable, namely a member of
the set Y defined in Section 2. The probability v which party A fixes in step (ii) above may be
expressed as the following term in EpCTL :

v = (
R

ϕB|(¬ϕA))

In steps (iii) and (iv) of the protocol, parties A and B fix the parameters α and β respectively
such that the following EpCTL properties are true:

(
R

ϕA|ϕB) >
1
α

(1)

(
R

ϕB|ϕA) >
1
β

(2)

The property of (v,ε)–fairness may be expressed thus:

AG(((
R

ϕB) > v)⊃ ((
R
(¬ϕA)|ϕB) 6 ε))

that is to say, in all paths of the protocol, the probability that “A is not privileged” given that B
is, assuming that the probability of “B being privileged” is greater than v, remains less than ε.
Note that we are using the comparators >,> freely; these may be expressed in terms of the 6
operator in the formal syntax of EpCTL.

4.2 Quantum One Time Pad

A qubit is the basic memory unit in quantum computation (just as a bit is the basic memory
unit in classical computation). The state of a qubit is a pair (α,β) of complex numbers such
that |α|2 + |β|2 = 1. A quantum one time pad [1] encrypts a qubit using two key (classical) bits
in a secure way: observing the encrypted qubit yields two results, both with equal probability.
In the special case that α and β are real numbers one bit key ϕK suffices. If ϕK = 1 then
the qubit is encrypted as the pair (β,−α), otherwise it remains the same. We consider that a
real number α is encoded using floating point representation, namely a vector of propositional
symbols ϕα

1 . . .ϕα
n which we denote just by ϕα. We will abbreviate by α = β the classical

formula (ϕα
1 ⇔ϕ

β

1)∧ . . .∧ (ϕα
n ⇔ϕ

β
n).

The following program simulates this process by first generating a random key and then
encrypting the qubit (α,β):

(i) Let ϕK := outcome of a fair Bernoulli trial;

(ii) If (ϕK = 1) then
(a) γ := α

(b) α := β

(c) β :=−γ

Assume that the initial values of α and β are c and d respectively (with c 6= d). It follows
from quantum information theory that in order to prove the security of the quantum one-time
pad, it suffices to show that the probability after the encryption of α being c is 1

2 (and hence of
α being d is also 1

2). We can use our logic and model checking procedure to show the above
by considering the probabilistic Kripke structure induced by the encryption program. Assume
that the program induces a single transition in the Kripke structure, and from that point on
the probability distribution over the states remains the same. Therefore, the security of the

12

Baltazar, Mateus, Nagarajan, and Papanikolaou

quantum one-time pad is equivalent to checking that all initial states fulfill

(2(α = c∧β = d∧ (¬(c = d))))⊃AX((
R
(α = c)) = 1

2).

5 Summary and Conclusion

In this paper we have introduced a probabilistic branching-time logic, EpCTL, which may be
regarded as a temporal extension of the exogenous probabilistic state logic EPPL. We have
stated the syntax and semantics of EPPL, considered the model–checking problem for formu-
las in this state logic, and presented an axiomatisation for it. We described the EpCTL exten-
sion, stating syntax, semantics, and model–checking issues in an analogous way to EPPL. The
expressiveness of EpCTL was discussed, and an axiomatisation was given. We demonstrated
the use of EpCTL as a means of expressing properties of two security protocols: a classical
probabilistic contract signing protocol, and the quantum one–time pad.

Our approach has been inspired by earlier work by Halpern, and we expect the probabilis-
tic temporal logic EpCTL to serve as a useful alternative to related classical logics such as
PCTL. Future work will include refining the axiomatisation of EpCTL, considering possible
improvements to the model–checking algorithm, and implementing the algorithm. Further
work on case studies is necessary, especially with a view to classifying and verifying the types
of properties which typically arise in security.

We hope this work will serve as a basis for ongoing work in developing an exogenous,
temporal quantum logic for model–checking general quantum protocols. A quantum state
logic, exogenous quantum propositional logic (EQPL) was proposed in [23]; we intend to
provide a temporal extension of that logic, extending the techniques described in the present
paper. Thus we have the necessary ingredients for building a dedicated model–checking tool
for the analysis of quantum cryptographic and communication systems, which is one of our
long-term goals.

References
[1] Ambainis, A., M. Mosca, A. Tapp and R. de Wolf, Private quantum channels, in: FOCS ’00: Proceedings of the 41st Annual

Symposium on Foundations of Computer Science (2000), p. 547.

[2] Baier, C. and M. Z. Kwiatkowska, Model checking for a probabilistic branching time logic with fairness, Distributed
Computing 11 (1998), pp. 125–155.
URL citeseer.ist.psu.edu/article/kwiatkowska96model.html

[3] Basu, S., R. Pollack and R. M.-F. coise, “Algorithms in Real Algebraic Geometry,” Springer, 2003.

[4] Beauquier, D., A. M. Rabinovich and A. Slissenko, A logic of probability with decidable model-checking, in: CSL ’02:
Proceedings of the 16th International Workshop and 11th Annual Conference of the EACSL on Computer Science Logic
(2002), pp. 306–321.

[5] Ben-Ari, M., Z. Manna and A. Pnueli, The temporal logic of branching time, in: POPL ’81: Proceedings of the 8th ACM
SIGPLAN-SIGACT symposium on Principles of programming languages (1981), pp. 164–176.

[6] Ben-Or, M., O. Goldreich, S. Micali and R. L. Rivest, A fair protocol for signing contracts, IEEE Transactions on
Information Theory 36 (1990), pp. 40–46.

[7] Carnielli, W. A., Possible-translations semantics for paraconsistent logics, in: Frontiers of Paraconsistent Logic (Ghent,
1997), Studies in Logic and Computation 8 (2000), p. 149163.

[8] Carnielli, W. A. and M. Lima-Marques, Society semantics and multiple–valued logics, in: Advances in Contemporary Logic
and Computer Science (Salvador, 1996), Contemporary Mathematics 235 (1999), pp. 33–52.

[9] Chadha, R., P. Mateus and A. Sernadas, Reasoning about states of probabilistic sequential programs, in: Z. Ésik, editor,
Computer Science Logic 2006 (CSL06), Lecture Notes in Computer Science 4207, Springer-Verlag, 2006 pp. 240–255.

13

citeseer.ist.psu.edu/article/kwiatkowska96model.html

Baltazar, Mateus, Nagarajan, and Papanikolaou

[10] Clarke, E. M. and E. A. Emerson, Design and synthesis of synchronization skeletons using branching time temporal logics,
in: Proceeding of the Workshop on Logics of Programs, LNCS 131, Springer-Verlag, 1981 .

[11] Clarke, E. M. and E. A. Emerson, Design and synthesis of synchronization skeletons using branching-time temporal logic,
in: Logic of Programs, Workshop (1982), pp. 52–71.

[12] Clarke, E. M., E. A. Emerson and A. P. Sistla, Automatic verification of finite-state concurrent systems using temporal logic
specifications, ACM Trans. Program. Lang. Syst. 8 (1986), pp. 244–263.

[13] Clarke, E. M. and J. M. Wing, Formal methods: state of the art and future directions, ACM Comput. Surv. 28 (1996),
pp. 626–643.

[14] den Hartog, J. and E. de Vink, Verifying probabilistic programs using a hoare like logic, International Journal of Foundations
of Computer Science 13 (2002), pp. 315–340.

[15] Fagin, R., J. Y. Halpern and N. Megiddo, A logic for reasoning about probabilities, Information and Computation 87 (1990),
pp. 78–128.
URL citeseer.ist.psu.edu/fagin90logic.html

[16] Hansson, H. and B. Jonsson, A logic for reasoning about time and reliability, Formal Aspects of Computing 6 (1994),
pp. 512–535.
URL citeseer.ist.psu.edu/hansson94logic.html

[17] Hodges, W., “Model Theory,” Cambridge University Press, 1993.

[18] Kripke, S., Semantical analysis of modal logic I. Normal modal propositional calculi, Zeitschrift für Mathematische Logik
und Grundlagen der Mathematik 9 (1963), pp. 67–96.

[19] Kwiatkowska, M., G. Norman and D. Parker, Prism: Probabilistic symbolic model checker, in: TOOLS ’02: Proceedings
of the 12th International Conference on Computer Performance Evaluation, Modelling Techniques and Tools (2002), pp.
200–204.

[20] Kwiatkowska, M., G. Norman and D. Parker, Probabilistic model checking in practice: case studies with prism,
SIGMETRICS Perform. Eval. Rev. 32 (2005), pp. 16–21.

[21] Kwon, Y. and G. Agha, Linear inequality LTL (iLTL): A model checker for discrete time Markov chains, in: J. Davies,
W. Schulte and M. Barnett, editors, Proceedings of 6th International Conference on Formal Engineering Methods (ICFEM
2004), Lecture Notes in Computer Science 3308 (2004).

[22] Mateus, P. and A. Sernadas, Exogenous quantum logic, in: W. Carnielli, F. Dionı́sio and P. Mateus, editors, Proceedings of
CombLog’04, Workshop on Combination of Logics: Theory and Applications (2004), pp. 141–149.

[23] Mateus, P. and A. Sernadas, Reasoning about quantum systems, in: J. Alferes and J. Leite, editors, Logics in Artificial
Intelligence, Ninth European Conference, JELIA’04, Lecture Notes in Artificial Intelligence 3229 (2004), pp. 239–251.

[24] Mateus, P. and A. Sernadas, Weakly complete axiomatization of exogenous quantum propositional logic, Information and
Computation 204 (2006), pp. 771–794, arXiv math.LO/0503453.
URL
http://www.elsevier.com/wps/find/journaldescription.cws_home/622844/description#description

[25] Mateus, P., A. Sernadas and C. Sernadas, Exogenous semantics approach to enriching logics., in: G. Sica, editor, Essays on
the Foundations of Mathematics and Logic (2005), pp. 165–194.

[26] Nilsson, N. J., Probabilistic logic, Artificial Intelligence 28 (1986), pp. 71–87.

[27] Norman, G. and V. Shmatikov, Analysis of probabilistic contract signing, Journal of Computer Security (2006), to appear.

[28] Papanikolaou, N., “Techniques for Design and Validation of Quantum Protocols,” Master’s thesis, Department of Computer
Science, University of Warwick (2005), also available as Research Report CS-RT-413.

[29] Pnueli, A., The temporal logic of programs, in: Proceedings of the 18th IEEE Symposium on Foundations of Computer
Science (FOCS 1977), 1977, p. 4657.

[30] Ramshaw, L. H., “Formalizing the analysis of algorithms.” Ph.D. thesis, Stanford University (1979).

14

citeseer.ist.psu.edu/fagin90logic.html
citeseer.ist.psu.edu/hansson94logic.html
http://www.elsevier.com/wps/find/journaldescription.cws_home/622844/description#description

	Introduction
	Logic of Probabilistic States - EPPL
	Language
	Semantics
	Model--checking EPPL
	Axiomatisation of EPPL

	The Computation Tree Extension - EpCTL
	Syntax
	Semantics
	Model--checking EpCTL

	Illustrative Examples
	A Contract Signing Protocol
	Quantum One Time Pad

	Summary and Conclusion
	References

