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ABSTRACT

�is thesis describes model checking techniques for protocols arising in quantum information
theory and quantum cryptography. We discuss the theory and implementation of a practical
model checker, , for quantum protocols. In our framework, we assume that the quantum
operations performed in a protocol are restricted to those within the stabilizer formalism; while
this particular set of operations is not universal for quantum computation, it allows us to develop
models of several useful protocols as well as of systems involving both classical and quantum
information processing. We detail the syntax, semantics and type system of ’s modelling
language, the logic  which is used for verification, and the verification algorithms that have
been implemented in the tool. We demonstrate our techniques with applications to a number of
case studies.
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stitute for Financial Computing), whose background in design and implementation of program-
ming languages has proved very helpful. Hynek helped me significantly with the development of
the semantics for , and gave sound advice on various technical aspects of this work. I look
forward to further collaboration with him in the future.

As a result of participating in numerous workshops, meetings and conferences, I have had the
opportunity to meet and discuss my work with several established computer scientists, with whom
I have had valuable discussions; this includes Samson Abramsky, Graham Birtwistle, Bob Coecke,



ACKNOWLEDGEMENTS viii

Edmund Clarke, Anuj Dawar, Vincent Danos, Jozef Gruska, Philippe Jorrand, Elham Kashefi,
Marta Kwiatkowska, Prakash Panangaden, Mark Ryan, Peter Selinger, and Joseph Sifakis.

My office mates and good friends, Hongyang Qu, Ashutosh Trivedi, Ritesh Krishna, Dim-
itris Vavoulis, and Timothy Davidson, have stood by me through all these years and we have had
a great many laughs together in the Formal Methods and Quantum Information Processing Lab and
beyond.

My research and research travel have been financially supported by the following sources:

∙ the Formal Methods Group, Department of Computer Science, University of Warwick
(which partially funded my Ph.D. studies)
∙ the following grants from the Engineering and Physical Sciences Research Council (EP-

SRC): GR/S/ (which partially funded my Ph.D. studies), EP/E/ (“QNET”),
and GR/S/ (“SymNet”)
∙ the European Union Sixth Framework Programme (Project “SECOQC”)
∙ the FCT-POCI Project FEDER POCI/MAT// (“QuantLog”)
∙ A CRUP/Treaty of Windsor grant (from IST Lisbon).

�is support has made it possible for me to survive as a Ph.D. student while also enabling me to
travel extensively for my work, within the UK as well as abroad.

It is a privilege to record here my thanks to my examiners Elham Kashefi and Ian Mackie for
their precious comments and feedback.

I am extremely grateful to Professor Sadie Creese and Professor Michael Goldsmith for giving
me the opportunity to start a challenging and rewarding research fellowship at the end of my
doctoral studies.

I would like to thank each and every one of my ...muses for the pain and love they have given
me at different times during my research; they know who they are.

Finally, I thank my parents for all their love and support, which has enabled me to get as far
as I have in my life.

— N. P.



CONTENTS

Abstract iii

Declaration iv

Acknowledgements vi

List of Figures xii

Preface xiv

Chapter . Introduction 
.. Context 
.. Motivation 
.. Methodology 
.. �esis Contribution 
.. Previous Work by the Author and Collaborators 
.. Related Work 
.. Outline 

ix



CONTENTS x

Chapter . Background 
.. �e Postulates of Quantum Mechanics 
.. Hilbert Space 
.. Operators and Matrices 
.. Projective Measurements 
.. Quantum Gates, Circuits and Approximate Universality 
.. �e Stabilizer Formalism 
.. Quantum Protocols 
.. Concluding Remarks 

Chapter . Probabilistic Model Checking and Efficient Simulation 
.. Adapting the Probabilistic Model Checker PRISM 
.. �e Limitations of the PRISMGEN Approach 
.. Efficiently Simulable Quantum Protocols 
.. Concluding Remarks 

Chapter . Specifying Quantum Protocols and �eir Properties 
.. QMCLANG: A Modelling Language 
.. Syntax 
.. Semantics 
.. �e Executability Predicate 
.. Type System 
.. �e EQPL and QCTL Specification Logics 
.. Interpreting QCTL Formulae over QMCLANG Models 
.. Protocols and Properties Expressible

Within the QMCLANG–QCTL Combined Framework 
.. Concluding Remarks 

Chapter . Implementation 
.. QMC Tool Description 



CONTENTS xi

.. Parser Implementation 
.. Scheduler Implementation 
.. Interpreter Implementation 
.. Model Checker Implementation 
.. Special Extensions 
.. Concluding Remarks 

Chapter . Applications 
.. Quantum Teleportation 
.. Quantum Coin Flipping 
.. Quantum Key Distribution with Error Correction 
.. A Quantum Error Correcting Network 
.. Quantum Secret Sharing 
.. Concluding Remarks 

Chapter . Review and Conclusion 
.. Summary 
.. Discussion 
.. Conclusions 

Bibliography 

Index 



LIST OF FIGURES

. �e principal quantum gates arising in protocols. 

. �e effect of the Clifford group gates on the Pauli gates under Hermitian conjugation. 

. Quantum circuit diagram for the superdense coding protocol. 

. Quantum circuit diagram for the teleportation protocol. 

. Quantum circuit diagram for the qubit bit–flip code. 

. Internal probabilistic state transition system for superdense coding. 

. An example with sending and receiving of variables. 

. An example with looping. 

. Concrete Syntax for . 

. Internal Syntax for . 

. Transition Relations for the Operational Semantics. 

. Executability Predicates. 

. Definition of an evaluation function for expressions. 
xii



LIST OF FIGURES xiii

. �e syntax of  (from []). 

. �e semantics of . 

.�e semantics of . 

. ’s overall structure. 

. �e Graphical User Interface of . 

. �e structure of a stabilizer tableau. 

. �e binary tableau representation of a quantum state. 

. �e Aaronson–Gottesman simulation algorithm 

.  Verification Algorithm: Quantum and Classical Formulae. 

.  Verification Algorithm: Real Terms. 

.  Verification Algorithm: Complex Terms. 

. Fixed point model checking algorithm for . 

.�e  model checking algorithm (continues in Fig. .). 

. �e  model checking algorithm (continued from Fig. .). 



PREFACE

A       which work together as a whole,
toward the attainment of a goal, the completion of a task, the execution of a compu-
tation. We are surrounded by a vast number of systems, man–made and natural, all

of which exhibit varying degrees of complexity. �e proper functioning of a modern society relies
on a vast number of diverse systems (political, economic, technological) with many intricate rela-
tionships and interdependencies. �erefore it is essential to look for practical means of managing
complexity, means of understanding, and for tools for analysing different types of systems.

Often the complexity of a system is so great that, in order to construct a theory which ac-
counts for its behaviour, one must combine actual observations of some components with several
hypotheses regarding the rest. Natural science is founded on a method of systematic observation,
and a scientific theory cannot be fully accepted unless it agrees with experiment. �e use of the
scientific method provides a solid assurance that a theory is correct, and provides a defense against
arbitrary conjecture and errors of human judgement.

xiv
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�eoretical computer science relies heavily on the use of abstraction, namely the description
of a system at a level of detail which is just sufficient for an analysis. Abstraction involves elimi-
nating unnecessary information about a system from view, leaving only the ingredients which are
considered relevant. �e resulting description is known as a model. �e benefits of abstraction are
twofold. Firstly, it allows one to focus on the essential components of a system, thus reducing its
apparent complexity. It also permits one to consider the interactions and dependencies between
different components in a system.

It may seem downright foolish to start ignoring elements of a system while trying to under-
stand it. However, a useful means of managing complexity should allow the user to separate and
re–group these different elements in his mind, and to investigate each one in turn. Just which
aspects of a system may be temporarily ignored is a matter which depends on the intended anal-
ysis. In spoken language, one is accused of “forgetting the forest for the trees” when he or she
insists on looking at minor details and missing important points (the “big picture”). One does
not study the patterns on the leaves when trying to decide whether a particular tree should be cut
down. On the other hand, it is often argued that “the devil is in the detail;” this reminds us that
leaf patterns can be extremely sophisticated and beautiful, and their study very difficult. System
engineers are confronted with design decisions daily, and choosing the right abstraction usually
involves a much finer distinction than this.

A high–level abstraction is one in which the emphasis is put not on individual components,
but on the overall structure of a system and on the communication that occurs at the interface
of the different components. �is level of abstraction enables reasoning about interactions and
dependencies. Oftentimes it is more important that components interact correctly with each
other than it is that any particular one functions fully. For instance, a flight control system should
be able to compensate for a failing aircraft engine by boosting all other engines, as well as by
activating relevant safety mechanisms. Any flaw in the interactions between the control software
and an aircraft’s machinery could be fatal, while the absence of such a flaw would save many lives.

Clearly, an abstraction which is too high–level will probably be useless. Guaranteeing that
all the machinery in an aircraft is well connected and that hence, communication between all
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components is possible, is only useful if one can also show that adequate communication will
happen when necessary. �us, while the technique of abstraction can be helpful in managing
complexity, it also has fundamental pitfalls. �is is true of any method used in science, and it is
the engineer’s role to apply the method with care.

It can be argued that the development of suitable abstractions and, hence, models is the start-
ing point for any serious scientific study of a given system. Once a model has been built, there
are numerous methods of analysis; some of these require pencil and paper, others are entirely
computer–based. It suffices to say here that the use of automated analysis techniques (including
simulation and formal verification) has proved highly successful in recent years, and that such
techniques have been used effectively for the design and validation of various real–world sys-
tems, ranging from simple communication schemes to commercial airliners. Computer–based
systems modelling and validation is superior to manual proofs of correctness in the case of large
and complex systems, for which assurances regarding system behaviour are required in short time
frames.

Any method which is intended for the development of complex system models must provide a
suitable level of abstraction, but it should also be rigorous and mathematically sound. In particular,
there is much to be gained from the use of well–studied mathematical techniques in system design,
especially when it is desirable to have formal proofs of correctness. �ere are many other benefits
in using such techniques; for instance, it is possible to directly compare aspects of two different
systems by examining the properties exhibited by the mathematical objects which are used to
model them.

Of interest to us in this thesis are systems comprising communication, concurrency and com-
putations involving certain specific physical phenomena (namely, phenomena of quantum physics
such as entanglement and the behaviour caused by quantum measurement). In particular, we are
interested in means of analysis of protocols for communication and cryptographic purposes which
make use of quantum information. Quantum protocols have particularly important applications
in cryptography. Several quantum protocols have been proposed for cryptographic tasks such as
oblivious transfer, bit commitment and key distribution.
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�e so–called BB protocol for quantum key distribution, which allows two users to estab-
lish a common secret key using a single quantum channel, has been shown to be unconditionally
secure against all attacks permitted by the laws of quantum mechanics. Such a degree of se-
curity has never been guaranteed by any classical cryptographic protocol, and the discovery has
incited widespread interest in the properties of quantum protocols. Furthermore, practical quan-
tum cryptographic devices are commercially available (e.g. from the companies Id Quantique¹ and
MagiQ²).

We argue that detailed, automated analyses of protocols such as these facilitate our under-
standing of complex quantum behaviour and enable us to construct valuable proofs of correct-
ness. Such analyses are especially important to manufacturers of commercial devices based on
such protocols; the actual security of commercial quantum cryptographic systems, for example, is
worth an in–depth investigation. Communication protocols have always been under scrutiny by
computer scientists, who have developed numerous techniques for analysing and testing them,
including process algebras, formal specification languages and automated verification tools. Auto-
mated verification techniques, such as model-checking and theorem proving, are frequently targeted
at protocols and have been used to detect faults and subtle bugs. In this work we hope to obtain
corresponding benefits for quantum protocols.

¹http://www.idquantique.com
²http://www.magiqtech.com

http://www.idquantique.com
http://www.magiqtech.com


CHAPTER



INTRODUCTION

A quantum computer, if built, will be to an ordinary computer as a hydrogen bomb

is to gunpowder, at least for some types of computations.

— From []

Q     as the most successful theory of natural science. Its
precepts challenge our fundamental understanding of the universe, and are often in direct
conflict with what our intuition leads us to believe. It provides us with a description of

the behaviour of matter on the atomic scale. �e implications of quantum theory for information
processing are very hard to ignore; indeed, to harness the potential of the quantum world is to
enable extremely powerful computational techniques, as well as novel means of data communica-
tion. �is is the province of the emerging field of quantum computation and quantum information.





CHAPTER . INTRODUCTION 

�e study of this field is, all at once, a challenge, a necessity, a potential and a drive, as identified by
Gruska []. Let’s investigate these in turn.

�e connections between information and its physical manifestation have raised certain fun-
damental theoretical questions at the interface of computer science and physics. A datum always
has a physical representation, whether it be a written mark on a piece of paper, or a flag set in a
computer register; but does it have an existence of its own, independent of the medium, and how
do the physics of the medium influence its information content? On the other hand, are physical
laws related to the rules that govern the flow of information in a system? Machines are inherently
physical devices, and their operation is governed by natural laws; do these laws dictate the nature
of computation itself? Indeed, Lloyd [] of MIT has suggested that the universe itself is a vast
quantum computer, and that it is the duty of physicists to discover the equations which govern
its behaviour. Clearly, the study of the connections between computation and the very nature of
matter poses many interesting challenges.

Since the inception and, especially, the manufacture of the transistor in the late s, there
has been a constant strive to develop ever smaller digital circuits. �ere has been an exponential
growth of the number of transistors on computer chips in the last forty years or so, as predicted
by Moore [] in . Keyes [] has extrapolated that, by the year , this constant minia-
turisation of computer circuits will reach the atomic level. At that point it will be necessary to
control and utilise quantum phenomena during the process of transcribing and manipulating in-
dividual bits of information. �us, an understanding of how these phenomena can be used for
information processing will become an absolute necessity.

Quantum computation and quantum information has been shown to have great potential. In
particular, the use of quantum phenomena allows the implementation of novel algorithms and
cryptographic protocols with no classical analogue. �e quantum algorithms of Shor [] and
Grover [] for prime factorisation and inverse database search, respectively, have significantly
better complexity than the best known classical algorithms for the same tasks (in the former case,
there is an exponential improvement). Protocols for quantum key distribution, such as BB [],
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have been shown to achieve unconditional security, a result which is not attainable using classical
computational means.

Finally, the study of quantum information processing provides a drive to explore the fun-
damental limits of nature and the physical laws which govern the universe on the lowest scale.
While quantum theory has been repeatedly shown to agree with experiment, physicists continue
to be at odds regarding its philosophical basis. �ere are still many open questions in quantum
mechanics, ranging from the origin of randomness in measurement to the issue of reconciling
the theory with the general theory of relativity [, , ].

�e focus in this thesis will be on the implications of this growing field for the development of
communication and cryptographic schemes, namely, for systems and protocols combining clas-
sical computations with quantum phenomena, such as the superposition of states, entanglement,
the randomness of quantum measurement, and the no–cloning property; we will have more to say
about each of these in Section .... More concretely, our aim is to describe formal verification
techniques and tools for quantum protocols.

�is chapter sets out the context for this work by giving a brief account of the field; the moti-
vation for our approach, and the intended contribution, are then described. A review of previous
and related work is also given. Finally, the contents of the remaining chapters are outlined.

.. Context

�ere are numerous texts on quantum computing [, , , , , , , ] and quantum
information [, , ]; the standard references on the field as a whole are [, ]. �e upsurge in
public interest in quantum theory and its applications in recent years is evidenced by the significant
number of special issues of popular periodicals, such as Scientific American and New Scientist,
devoted to its different facets; these make a rewarding read. Here we review some pertinent
aspects of quantum information and quantum computation.

... Quantum Information. Landauer [] characteristically observed that every kind of
information has a physical manifestation with which its existence is inextricably linked. �is
implies that the applicability of physical laws extends to cover all sorts of data. �us, physics
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imposes restrictions on data representation and storage. For instance, if there is such a thing as
a fundamental lower bound on the size of all physical objects, then this constrains the quantity
of data that may ever be stored. In a widely publicised lecture, Feynman [] argued that there
is no fundamental physical obstacle to writing the entire contents of the Encyclopaedia Britannica

on the head of a pin. Nevertheless, Feynman and his colleagues were aware of the difficulties of
controlling matter on this scale.

Quantum information theory is concerned with how the phenomena which occur on the
atomic level can be used constructively for the representation, storage and transmission of data.
�e potential of such phenomena for communication and cryptographic purposes was realised by
Wiesner [], who proposed the use of polarised photons to represent individual bits in a key
string. �e novelty here was to regard quantum mechanics not as an obstacle, but as a means
for achieving a communication goal. Several other communication protocols have been proposed
which make use of quantum phenomena, and the most characteristic ones will be detailed in
Chapter .

.... Properties of Quantum Systems. In order to realise how quantum protocols work, it is
necessary to understand quantum states and their properties. �ese are documented in detail in
all the standard texts; we defer the mathematical treatment to the next chapter.

A quantum system such as an atom, an electron, or a photon are characterised by several
physical attributes, such as position, momentum, spin and polarisation. �e state of a particular
system describes these attributes at a given time instant. In quantum physics, a state is described
by a wavefunction. It is a well–known fact that quantum systems exhibit both particle–like and
wave–like behaviour (this is known as wave–particle duality []) and the wavefunction is designed
to reconcile these two views. Furthermore, the state of a quantum system evolves over time in
accordance with a mathematical law known as Schrödinger’s equation.

According to Williams and Clearwater [, p.] there are six essential properties of quantum
states that distinguish quantum information from classical information. �ese are superposition,
entanglement, interference, non–determinism, non–cloneability, and non–locality.
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�e so–called superposition principle [, , ] states that, if a quantum system can be in
one of given states, then it can also be in a state that is a mixture, a simultaneous combination of
these. �is principle is central to quantum information, as it distinguishes qubits (i.e. quantum
bits) from classical bits, which can only ever be in one of two states 0 and 1, but never in both.
Superposition allows many classical states to be encoded efficiently in a single quantum state,
leading to what is known as quantum parallelism.

When several states are combined together, they are said to have a joint quantum state. �is
state may be separable, so that the individual states of the different particles can be identified.
However, it may contain entanglement, in which the states of particular particles are tied together
and cannot be separated or identified individually. Entanglement is a key feature of quantum
mechanics, used extensively in quantum information theory; indeed, it is the property of quantum
states that most distinguishes them from the possible states of any classical system.

In order to extract information from a quantum system, an observer must perform a measure-

ment. Measurement gives rise to non–determinism, in that the outcome is not predictable. For
instance, electrons have a property known as spin; relative to an axis chosen by the observer, the
value of spin may be ‘up’ or ‘down’ or, more generally, in a superposition of the two. A measure-
ment would cause the electron’s spin to collapse, at random, to either the ‘up’ or the ‘down’ state.
If the electron in question is prepared in a known state, then the probability of either outcome
can be computed, but the actual outcome is random. When one of a set of entangled particles is
measured, the act of measurement influences the state of the other particles. Suppose there are
two such particles; measuring the state of one alters and makes known the state of the other. �is
has also been confirmed by experiment.

Wootters and Zurek [] showed that it is impossible to duplicate an unknown quantum
state; this is known simply as the no–cloning theorem. �is result is used in an essential way in
quantum cryptographic protocols, as we will see in later sections.

Quantum entanglement is known to be maintained between particles even when they are
physically separated; this is known as non–locality. Many quantum protocols rely on this property,
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as measurements of entangled states, which may be miles apart, can be used to communicate
information.

Quantum states are very fragile. As a particle interacts with its environment, its state tends to
lose its stability and its wavefunction appears to collapse. �is phenomenon is known as decoher-

ence. In order to run a quantum protocol, or execute any quantum computation, it is necessary to
combat decoherence. �e phenomenon of decoherence is one of the main obstacles to building
practical large–scale quantum computers today, but advances in experimental techniques and the
development of quantum error correction help to overcome this particular problem.

�e phenomena just described characterise a whole class of communication and cryptographic
protocols with no direct analogue in classical computer science. A description of representative
quantum protocols is given in Chapter .

... Quantum Computation. Although quantum communication and cryptographic pro-
tocols are our focus in this thesis, we will now review certain aspects of quantum computation
that are historically relevant.

A key feature of quantum mechanics is reversibility: it is always possible for a quantum system
to evolve back to a previous state. Bennett [] showed the existence of universal reversible Turing
machines, thus proposing the first model of reversible computation. Subsequent work by Toffoli
[] and Fredkin and Toffoli [] led to the discovery of universal classical reversible gates.

Benioff [] proposed the first theoretical model of a quantum computer, showing it to be at
least as powerful as a classical reversible computer; his proposal offered no computational speedup
relative to a classical machine. Meanwhile Feynman [] argued that, to simulate the behaviour
of a general quantum mechanical system, a probabilistic Turing machine would require time
exponential in the size of the system.

It was Deutsch [] who proposed the first complete model of a quantum Turing machine,
and conjectured that its computational power would be greater than that of a classical Turing ma-
chine for certain computations. Subsequently, Deutsch and Jozsa [] demonstrated that there
exist computational problems outside the complexity class P which can be solved with certainty in
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polynomial time on quantum computers. Bernstein and Vazirani [] developed quantum com-
plexity theory, and conceived of the new complexity class BQP (bounded quantum polynomial
time).

�e discovery of efficient quantum algorithms for factoring integers and computing dis-
crete logarithms by Shor [] stimulated the interest of physicists and computer scientists alike,
and gave the greatest impetus to the field of quantum computation. �e best known classical
factorisation algorithm for m–bit numbers has complexity O(exp(c(lnm)1/3(ln lnm)2/3), where
c =

(
64
9

)1/3, according to []. Shor’s quantum factorisation algorithm, on the other hand, re-
quires O(m2 logm log logm) steps on a quantum computer plus a polynomial number of steps on
a classical computer. �is is very significant, as some cryptographic systems such as RSA []
rely on the belief that no polynomial time factorisation algorithm exists; a large scale quantum
computer implementing Shor’s algorithm, therefore, would be a threat to the security of such
systems.

�e code–breaking potential of quantum computers is, therefore, a cause for seeking cryp-
tographic methods which are secure against such devices, and this is why studying the security
of quantum key distribution and related protocols is so worthwhile. Quantum cryptography is
designed to be secure even against quantum computers, as its security does not depend on the
computational power of the enemy, but on fundamental quantum mechanical laws.

Grover [] proposed an efficient quantum algorithm for unstructured database search. Clas-
sical solutions to this problem have an average time complexity of O( N

2
) for a database with N

elements, whereas Grover’s algorithm takes O(
√
N) steps. �e computational speedup in this

case is not as substantial as with Shor’s algorithm, but it demonstrates how quantum phenomena
can be used to solve certain computational problems highly efficiently.

Quantum algorithms are designed to be implemented on a quantum computer, and such a
device has yet to be built on a large scale. Experimental setups do exist, and there are several
technologies that show some promise: ion traps, cavity quantum electrodynamics, and nuclear
magnetic resonance stand out the most. �ese are discussed in all the standard texts [, ].
However, quantum cryptographic systems have been implemented with current–day technology
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[], and progress in experimental physics has led to experimental versions of several quantum
protocols [].

.. Motivation

Having reviewed the general setting of quantum computing and quantum information, we
turn now to the issues and methods with which we are concerned.

It is a well–known fact that communication protocols are notoriously difficult to design. Holz-
mann [] illustrates this by describing a scene from antiquity, taken from the writings of the
Greek historian Polybius: it seems that even a simple communication protocol, involving the use
of fire signals to relay messages during war, will be found to have fundamental flaws from which
it is not possible to recover. �is particular example was discussed in some detail in Papanikolaou
[].

Protocols are sets of rules that govern the way in which exchanges of data are performed in a
communication system. �e use of a protocol, as opposed to simple unstructured transmission of
information from one party to another, is intended to prevent errors and to handle unexpected
conditions, and, in the cryptographic setting, to satisfy certain security requirements for messages
such as privacy, non–repudiation and more.

Formally, a protocol is characterised by five principal elements []:

() the service to be provided by the protocol,
() the assumptions about the environment in which the protocol is executed,
() the vocabulary of messages which are used to implement the protocol,
() the encoding of each message in the vocabulary, and
() the procedure rules guarding the consistency of message exchanges.

It is precisely the procedure rules mentioned in () above which are the most difficult to design;
these rules give rise to a complex set of behaviours that must be modelled systematically and
rigorously.

�e procedure rules for a given protocol essentially define a sequence of interactions between
concurrently executing processes; this concurrency is often the cause of subtle flaws to do with
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timing, race conditions, deadlock and similar issues. According to Holzmann [], unexpected
events are the most common reason for a protocol failure, and by definition it is impossible for
a system designer to account for such events in advance (although one can try to predict such
events based on past experience). Also there are so many possible combinations of events that
may occur during execution of a protocol that one cannot manually calculate them all (so as to
ensure correct behaviour in each case).

Further, when a protocol is designed to provide a security–related service (we will use the
terms “security protocol” and “cryptographic protocol” interchangeably) the issues just cited are
compounded by the need to counter potential attacks. In fact, correcting flaws related to ordinary
protocol behaviour may even have the effect of introducing new flaws that would enable an enemy
to mount a successful attack. Also, even though a single protocol may be proven correct and secure,
the way in which it is used in a particular system (esp. how it is combined with other protocols)
may compromise its security.

�e inevitable conclusion is that protocol design is a very difficult challenge, one which is
beyond the capabilities of even the most skilled engineer. Proofs of correctness are sometimes
carried out manually, by applying the mathematics relevant to the system at hand. �e need for
a systematic and rigorous analysis is apparent, yet such an analysis seems impractical, costly and
very time–consuming unless some form of automation is used. Computer–based modelling and
validation techniques, mentioned earlier, largely address this need and have been in widespread
use for some years now. Section .. reviews the field of automated verification, while Section ..
discusses formal modelling techniques.

.. Methodology

Methods for reasoning about protocols vary; we emphasise automated verification techniques
here, as well as specification languages and logics. A survey of formal analysis techniques for
communication protocols is given in Babich and Deotto [].

... Automated Verification. Automated verification techniques fall into two broad cate-
gories; model checking is fully automated, while automated theorem proving is partly automated.
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Model checking [, ] is a method of computer–aided verification used widely in academia
and industry for the analysis of software and communication systems. �e method essentially
consists of three phases: (i) modelling the system of interest at a suitable level of abstraction, usu-
ally by describing it in a formal specification language (see also section ..), (ii) specifying the
properties that the system must satisfy — these properties are typically expressed with reference
to the system model, using a logic designed specially for this purpose (e.g. linear or branching
time temporal logic), and (iii) supplying the model and the properties to a model checking tool,
which automatically constructs the state space of the model and checks whether or not the given
properties are satisfied (and if not, usually providing a counter–example). Model checking in-
volves exploring all possible behaviours arising from the model and, as such, it is an exhaustive

method of analysis. �e benefit of this is that all combinatorial possibilities are considered, and
often particular scenarios are discovered which may not have been foreseen by a human user; this
is especially true of larger models, which are too complex for analysis by hand.

Model checking software (model checkers) has been used to discover flaws in various industrial
systems and protocols. For instance, the SPIN tool [] was originally used to detect and correct
signalling issues in telecommunications relays and switches at AT&T []. Similar tools have
been used for the analysis of larger systems, ranging from flight software to CPUs, as discussed
in the book by Huth and Ryan []. Further applications of model checking are found in the area
of security, namely in the detection of subtle flaws in cryptographic protocols, relating to privacy
and other security properties. For example, Lowe [] used the FDR model checker [, ] to
detect a flaw in the Needham–Schroeder PKCS protocol []; this is often heralded as one of
the greatest successes of the technique, since it brought to the fore an issue with a protocol in
widespread use.

Model checkers in widespread use include SMV [], SPIN [], UPPAAL []. �e PRISM
model checker [, , ] is designed for the analysis of probabilistic systems. �e Formal Meth-
ods Wiki [] contains an extensive database of verification tools, specification formalisms and
related techniques, while the YAHODA database [] focusses on tools, mainly model checkers.
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Automated theorem proving tools such as Coq [], HOL [, ], Isabelle [] and PVS []
are designed to assist a human user in the construction of formal proofs. For such tools to be used,
a mathematical theory for a given problem must be sufficiently developed and suitably encoded
in computer form. �e correctness of a system, such as a particular protocol, is formulated as a
theorem; the theorem has to be expressed in the logic of the automated theorem prover, and can
then be proven in a stepwise manner. �e main steps of the proof are guided by the user of the
tool, while the tool itself applies certain proof rules automatically and does the necessary book-
keeping as the proof progresses. Automated theorem proving has substantially more generality
than model checking, but it requires human intervention and the existence of several libraries of
existing proofs and the development of specialised “theories” for the problem in question. A very
notable application of automated theorem proving is Gonthier’s proof [] of the Four Colour
�eorem using the tool Coq [].

... Specifying Systems. While verification techniques focus on automating proofs or parts
of proofs of correctness for different systems, it is just as important to have adequate means of
defining unambiguously, or formally specifying, system behaviour. For the description of protocols
such formalisms are numerous, and usually model checking tools provide built–in specification
languages. For instance, SPIN [] uses the language PROMELA, while FDR uses CSP [].

A large portion of the formal methods community is dedicated to the development of spec-
ification formalisms for different types of systems, taking the view that a suitable formalism can
facilitate system design while also eliminating design flaws. Formalisms such as VDM [] and
Z [] have been devised with this conviction in mind and have been used in several industrial
applications.

Of most interest to us are process algebras [, , , ], which were originally designed
for high level reasoning about multi–agent systems involving concurrency. Process algebras ab-
stract away from certain features of programming languages, while providing various operators
for expressing parallelism and communication.
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CCS (“Calculus of Communicating Systems”) [] and CSP (“Concurrent Sequential Pro-
cesses”) [] allow us to construct descriptions of system behaviour by providing an elegant, high
level syntax for concurrent communicating processes. �ey differ slightly in syntax, and the latter
has more operators. �e �–calculus [] was conceived as an extension to CCS which can be
used to model mobility in processes and, as such, has more expressive power than its predeces-
sor. For these formalisms, various notions of equivalence between processes have been defined,
including bisimulation relations [] of different strengths.

Equivalence relations between processes are particularly significant, since they may be used to
prove that a given system satisfies its specification. Showing that a model of a system, expressed
as a process M , satisfies a specification, expressed as another process S , amounts to proving the
equivalence P ∼= S , where ∼= is a suitably defined equivalence relation over the domain of all
processes. Such a proof may be constructed automatically, and there are tools which implement
such equivalence tests for processes (notably the Concurrency Workbench of the New Century [],
which handles the formalisms CCS, CSP, and LOTOS, among others).

Specialised extensions of process algebras have been proposed to allow for the description of
particular classes of systems; for instance, probabilistic process algebras (see []) capture fault–
tolerant systems and protocols, in which probabilities can be explicitly assigned to different events.

Since process algebras are particularly good in describing systems involving concurrency and
communication, they have been used for the specification of both communication and crypto-
graphic protocols since their inception. �e process algebra LOTOS [, ], for example, was
designed with the express intention of formalising communication protocols. Lowe’s discovery
of a flaw in the Needham–Schroeder protocol, cited earlier, involved expressing the protocol in
the process algebra CSP.

... Specifying System Properties. In the process algebraic approach to the specification
of systems, the desired behaviour of a protocol is typically expressed as yet another process; in
this case, process equivalences are used for verification. More commonly, system properties are
described using formulae in a suitable logic, and in this case model checking algorithms are used.
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An example of a setting in which a process algebra is used for system specification, but a logic is
used for property specification, is provided by the framework of Hennessy–Milner logic (HML)
[]. HML is used to formalise properties of CCS processes.

Higher order logic is the logic used in the automated theorem prover HOL [, ], while
most model checking tools use some form of modal logic, including temporal logics (linear []
or branching time temporal logic []) and epistemic logics [, ].

.. �esis Contribution

�e goal in this thesis is to develop model checking algorithms and tools specifically for quan-
tum protocols.

As discussed in Section ., quantum protocols exhibit properties with no direct analogue in
classical computer science, since they exploit phenomena such as superposition, entanglement,
and probabilistic measurement, which are only manifested on the atomic scale.

On the other hand, we have seen in Section . that protocol design is inherently difficult in
general, and that many methods have been devised to assist in the automated analysis of protocols.
Model checking is a prominent method, which has the benefit of full automation.

�e difficulties arising in designing correct communication and cryptographic protocols are
likely to be exacerbated when a designer has to take into account behaviours caused by quantum
phenomena. Today, while simulation tools for quantum information systems abound (see also
section ..), to our knowledge no other authors have developed a tool aimed at verification,
although the work of Sadrzadeh in connection with epistemic logic and Aximo [] has some
theoretical connections with this. It is our contention that a suitable modelling language and
verification tool for quantum protocols is much needed, and will serve to address these difficulties.

We will present in this thesis a framework which includes:

∙ a modelling language () for quantum protocols with a formal semantics and
type system,
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∙ an adaptation of a logic for describing properties of such protocols, interpreted over the
semantics of the modelling language (our contribution lies in the adaptation of the logic
to the needs of  and the redefinition of its semantics in terms of )
∙ an implementation of a model checker for a class of quantum protocols which are effi-

ciently simulable on a classical computer, with
∙ a discussion of complexity issues, and how a classical model checker can be adapted to

model such protocols, and
∙ a number of case studies, ranging from simple quantum protocols to a model of a larger

system.

An important aspect of this work is our intention to build a software tool that is as efficient
as possible; this justifies why have restricted the scope of our method to efficiently simulable
protocols, namely those expressible within the stabilizer formalism.

.. Previous Work by the Author and Collaborators

As detailed below, in previous work we have considered the use of existing model checking
tools for the analysis of quantum protocols, namely –,  and . Directly related to
this was the design of the quantum process algebra “Communicating Quantum Processes ()”
by Gay and Nagarajan [].  was designed so as to provide a formal, high–level language
for modelling quantum communicating systems, including protocols, and it possesses a formal
semantics and type system.

Using Milner’s , Nagarajan and Gay [] were able to develop a formal description of
the BB protocol [] and to verify a correctness property using the Concurrency Workbench
of the New Century. �is tool was used to prove the trace equivalence of the protocol with its
specification.

Later, we chose to use the probabilistic model checker  to develop and analyse models
of protocols that explicitly accounted for the probabilism arising from quantum measurements.
In [],  was used to show the correctness of part of BB, while in [] we described
techniques for adapting  to handle a specific set of quantum operations in a more direct
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fashion. �e development of  [] was motivated by the large size of the resulting models
(even for relatively small protocols) and the need to specify properties specific to quantum systems.

.. Related Work

... Quantum Programming Languages and Quantum Process Calculi. Related to this
work is the design of quantum programming languages, and there have been many proposals for
such languages to date: QCL [, ], QPL [], QGCL [], the quantum �–calculus of Van
Tonder [], the quantum process algebra QPAlg [, ] to name a few. See the survey by Gay
[] for an overview.

Lalire and Jorrand have developed their quantum process algebra by adding equivalence rela-
tions; see []. �e group of Mingsheng Ying has developed qCCS, a quantum process algebra
inspired by  (see [, ]).

�e model of measurement–based quantum computation has given rise to the measurement

calculus of Danos, Kashefi and Panangaden [], and this formalism has been used to derive in-
teresting properties of measurement–based circuits. A more recent extension of this work is de-
scribed in [].

... Semantic Techniques. Abramsky and Coecke [–] have developed a category–theoretic
formulation of the axioms of quantum mechanics. �eir approach allows for a mathematical
analysis of information flow in quantum protocols, especially that flow which is made possible
through the use of entanglement, and they have demonstrated it with a correctness proof of the
teleportation protocol (see Chapter  for a description).

Perdrix [] has used abstract interpretation techniques to analyze entanglement properties
of states, while Prost and Zerrari [] use logical techniques for the same purpose.

... Logics for Quantum Information. �e increased interest in quantum computation
and quantum information in recent years has made the subject of quantum logic very relevant
today. Ever since research in quantum logic was initiated by Birkhoff and von Neumann [],
physicists have constantly been at odds over what its precise form should be. �e emphasis was
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mostly put on the semantics of quantum logic — in particular, on the mathematical structures that
underlie quantum theory. A broad survey of quantum logic and logics for quantum information
was given in Papanikolaou [].

Mateus and Sernadas [, ] and Meyden and Patra [, ] (see also Patra []) have
developed logics for reasoning about quantum information systems, including protocols. �eir
approaches are fundamentally different to the one of Birkhoff and von Neumann; both pairs of
authors have designed quantum logics which are extensions of probabilistic logic.

Mateus and Sernadas have used the exogenous approach to design a logic for reasoning about
quantum systems. �is means that they have kept intact the classical model of propositional logic
as the basis for their logic and simply augmented it to account for the probabilism inherent in
quantum mechanics; in particular, the semantics of their logic is such that the denotation of a
quantum proposition is given by a superposition of the denotations of classical propositions.

So, instead of building their logic atop the algebraic structures of quantum mechanics, Mateus
and Sernadas have used models of propositional logic as their starting point. �eir work is par-
ticularly inspired by the semantics of probabilistic logic, as given in [, ]. �eir logic is named
exogenous quantum propositional logic (). A more powerful variant, which allows reasoning
about the dynamics of quantum systems, is  (dynamic ).

More recently the same authors defined Quantum Computation Tree Logic () [, ].
In [] they present high–level model checking algorithms for  and analyse their complexity
(note that they do not mention any implementation; these algorithms were developed as this work
was progressing and were published independently). �ey have done this for the most general
possible setting, namely, for arbitrary quantum states which may arise in quantum algorithms and
protocols.

Meyden and Patra [] have focused on adapting the probabilistic logic in [] to quantum
systems, resulting in a logic for knowledge and time in quantum systems; they have separately
proposed a logic for reasoning about the probabilities arising in quantum systems [].

Other logics for the specification of quantum systems exist; D’Hondt and Panangaden []
have proposed an epistemic logic for distributed quantum systems, and Danos and D’Hondt []
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have proposed a temporal epistemic logic for reasoning about quantum protocols. Sadrzadeh []
has considered the use of epistemic logics for the analysis of quantum cryptographic schemes. As
mentioned in section ., this last author has been involved in the development of a reasoning
tool called Aximo [].

... Quantum Simulation Tools. Quantum simulation tools are intended for physicists
and allow them to visualise the evolution of a quantum circuit. Existing simulation tools for
quantum systems [] are designed to help the user understand the function of a given quantum
algorithm or protocol; some tools have a graphical user interface, and many allow the simulation
of systems with arbitrary quantum gates, even if there is a substantial computational cost due to
the limited power of the classical machine running the simulation. Simulators which allow only
stabilizer operations include CHP [] and GraphSim []. Quantum simulation tools are normally
not efficient (the last two are an exception).

.. Outline

�is thesis is organised as follows. Chapter  reviews background material and concepts which
are used later. Chapter  describes a first approach to the verification of quantum protocols, which
uses existing model checking tools; in particular, we describe techniques for adapting the proba-
bilistic model checker PRISM to enable the analysis of small quantum protocols. �is discussion
leads to the observation that existing verification tools are fundamentally inadequate for the anal-
ysis of quantum systems, justifying a more specialised methodology. In Chapter  we describe a
new specification language for quantum protocols and state its formal semantics; the logic 
is also described and related to the semantics of the specification language. �e implementation
of the  model checking tool is detailed in Chapter , and includes explanations of simulation
and verification algorithms.

Examples of protocol analyses using  are provided in Chapter , and include quantum
teleportation, quantum coin–flipping, a network involving quantum key distribution and quan-
tum error correction, and quantum secret sharing. �e work concludes with a final review and
discussion, as well as directions for future work in Chapter .



CHAPTER



BACKGROUND

Bell ’s theorem ... proves that quantum theory requires connections that appear

to resemble telepathic communication.

— Gary Zukav

I      those concepts and notations which are required for a
proper understanding of the treatment that follows. We will focus on the mathematical
framework of quantum mechanics, giving relevant definitions; our presentation aims to be

as self–contained as possible. We will introduce Dirac notation for quantum states and discuss
measurement and evolution of a quantum system. We will give a detailed account of several
quantum protocols of interest, namely: superdense coding, quantum teleportation, a quantum
error–correcting code, conjugate coding, quantum key distribution, and quantum coin–flipping.
�e stabilizer formalism will be introduced, along with the attendant algebraic ideas.





.. THE POSTULATES OF QUANTUM MECHANICS 

.. �e Postulates of Quantum Mechanics

�e main principles of quantum mechanics can be summarised in a few basic postulates,
which are stated below.

Postulate . All possible information about an isolated physical system can be obtained from a state

vector, which is an element of an abstract vector space H . We denote the elements of H using the

notation ∣ ⟩, where  is some label.

Postulate . �e state space of a composite quantum system is defined as the tensor product of the state

spaces of its components.

Postulate . Physically measurable quantities are represented by Hermitian operators that act on state

vectors in H and are known as observables. A linear operator A is Hermitian if it is equal to its

adjoint, i.e. if A† = (AT )∗ = A.

Postulate . If an operator A has eigenvalues �i and eigenvectors ∣ai⟩, i.e. if A∣ai⟩ = �i ∣ai⟩, then the

probability of obtaining measurement result �i when measuring a state ∣ ⟩is given by ∣ci ∣2, where the

ci are the coefficients obtained when expanding ∣ ⟩in terms of the eigenvectors ∣ai⟩, so that:

∣ ⟩ = c1∣a1⟩+ c2∣a2⟩+ ⋅ ⋅ ⋅+ cn∣an⟩

In other words, the possible results of a measurement of a physical quantity are the eigenvalues of the

corresponding observable.

Postulate . �e state of a system after a projective measurement yielding result �i is described by the

basis vector ∣ai⟩ corresponding to the coefficient ci .

Postulate . �e time evolution of a quantum system is governed by the Schrödinger equation,

iℏ
∂

∂t
∣ ⟩ = H ∣ (t0)⟩



.. HILBERT SPACE 

where H is the so–called Hamiltonian (which is specific to the system being studied) and t0 is some initial

time. �e solution to this equation gives the wavefunction ∣ (t)⟩, which is the quantum state of the

system as a function of time.

�e postulates dictate the basic rules of the theory and link together the concepts of state
space, observable, measurement and evolution. We now discuss these concepts in more detail.

.. Hilbert Space

In quantum mechanics the possible states of a system (the term ‘system’ in this context is
normally taken to refer to a particle or a closed collection of particles) are described by vectors
belonging to a complex–valued, complete, vector space equipped with an inner product. Such a
space is referred to as a Hilbert space. A complex vector space V is a set which contains a zero
element 0, a unit element 1, and, for all vectors ∣ ⟩, ∣�⟩, ∣�⟩ ∈ V and for all �, � ∈ ℂ satisfies
the following:

∣ ⟩+ ∣�⟩ = ∣�⟩+ ∣ ⟩ (.)

(∣ ⟩+ ∣�⟩) + ∣�⟩ = ∣ ⟩+ (∣�⟩+ ∣�⟩) (.)

0 + ∣ ⟩ = ∣ ⟩ (.)

∣ ⟩ − ∣ ⟩ = 0 (.)

�(�∣ ⟩) = (��)∣ ⟩ (.)

(� + �)∣ ⟩ = �∣ ⟩+ �∣ ⟩ (.)

�(∣ ⟩+ ∣�⟩) = �∣ ⟩+ �∣�⟩ (.)

1 ∣ ⟩ = ∣ ⟩ (.)

A Hilbert space is equipped with an inner product ⟨ ∣�⟩, which satisfies:
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⟨�∣ ⟩ = ⟨ ∣�⟩∗ (.)

⟨ ∣ ⟩ ⩾ 0 (.)

(� ⟨ ∣+ � ⟨ ∣)∣�⟩ = �⟨ ∣�⟩+ �⟨ ∣�⟩ (.)

Note that the symbol ⟨ ∣ (known as a ‘bra’ in the literature) is defined as the complex conjugate
transpose of ∣ ⟩. If we take the convention that a state is written as a column vector, then a bra
is a row vector, so that their inner product is just a complex number.

Given a Hilbert space H , we can obtain a spanning set {∣�i⟩}, such that each ∣ ⟩ ∈ H can
be written as a linear combination of the ∣�i⟩:

∣ ⟩ =
∑

i

�i ∣�i⟩

Definition . (Linear Independence). A set of n vectors {∣ i⟩}n
i=1 is linearly independent if, for

any set of n nonzero complex numbers {�i}n
i=1,

∑
i

�i ∣ i⟩ = 0

Definition . (Orthogonality). Two vectors ∣ ⟩and ∣�⟩are orthogonal if ⟨ ∣�⟩ = 0. A set of vectors

is orthogonal if every vector is orthogonal to every other vector.

Definition . (Basis). If H is a Hilbert space and S is a set of linearly independent vectors which

span H , then S is called a basis for H .

Definition . (Dimension). All bases for a Hilbert space H have the same size n, which is referred

to as the dimension of H .

We conventionally label the basis vectors of an n–dimensional space using the integers 0 to
n − 1, so that {∣0⟩, ∣1⟩} is a basis for H2. �us a vector ∣ ⟩ in an n–dimensional space may be
expressed using the expansion:
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∣ ⟩ =
n∑

i=0

ci ∣i⟩ = c0∣0⟩+ ⋅ ⋅ ⋅+ cn−1∣n − 1⟩ (.)

A two–dimensional Hilbert space (denoted H2) corresponds to the state space of a quantum
system with two degrees of freedom, known as a qubit, or quantum bit. Such is the state space
of a spin–1

2
electron, for example, or a hydrogen atom (which has two basis states, a ground state

and an excited state). We can write the general state of a qubit as:

∣ ⟩ = �∣0⟩+ �∣1⟩ where �, � ∈ ℂ (.)

Systems of many quantum states have a state space which is the tensor product of the individual
state spaces. Two quantum states ∣ ⟩ =

∑
i ci ∣i⟩ and ∣�⟩ =

∑
j dj ∣j⟩ can be combined to form a

joint state by taking the tensor product ⊗:

∣ ⟩ ⊗ ∣�⟩ = ∣ ,�⟩ = ∣ �⟩ =
∑

i ,j

cidj ∣i⟩ ⊗ ∣j⟩

For an n–qubit system, we have a state space which is the tensor product of n copies of H2:

Hn = H2 ⊗ ⋅ ⋅ ⋅ ⊗H2︸ ︷︷ ︸
n

�e state space Hn is spanned by 2n basis vectors, so that the general state of an n–qubit system
can be written

∣ ⟩ =
2n−1∑
i=0

ci ∣b(i)⟩

where b(i) represents the integer i in binary notation. For example, the general state of a two–
qubit system can be written:

∣ ⟩ = c0∣00⟩+ c1∣01⟩+ c2∣10⟩+ c3∣11⟩ where c0, c1, c2, c3 ∈ ℂ

Note that a system of two or more qubits may be in an entangled state; when this occurs the
system as a whole has a known state, which cannot be decomposed, or separated, into individual
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states for each of the qubits. For example, while the state

1√
2
∣00⟩+ ∣01⟩ can be rewritten as 1√

2
∣0⟩ ⊗ (∣0⟩+ ∣1⟩)

it is not possible to do the same for the entangled state of two qubits below:

1√
2
∣10⟩+ ∣01⟩

Finally, note that we conventionally take quantum state vectors in their normalised form, so
that:

for a state ∣ ⟩ = c0∣0⟩+ ⋅ ⋅ ⋅+ cn∣n⟩ we have
∑

i

∣ci ∣2 = 1

�is justifies the normalisation coefficient of 1√
2

which appears in the above examples.

.. Operators and Matrices

Transformations of quantum states are expressed mathematically by linear operators acting in
the Hilbert space under consideration. An operator T : Hn → Hn is linear if, given �, � ∈ ℂ

and vectors ∣u⟩, ∣v⟩ ∈Hn, it satisfies:

T (�∣u⟩+ �∣v⟩) = �T ∣u⟩+ �T ∣v⟩

An operator has a matrix representation with respect to a set of basis vectors {∣ui⟩}2n−1
i=0 whose

elements Ti ,j are given by
Ti ,j = ⟨ui ∣T ∣uj⟩

We define two significant kinds of operator:

Definition . (Hermitian operator). An operator T is Hermitian if is equal to its adjoint, i.e. if

T † = T (similarly for the matrix representation of T , where the adjoint is obtained by transposing and

then taking the complex conjugate of all elements).

Definition . (Unitary operator). A matrix or operator U is unitary if:

UU† = U†U = I where I is the identity matrix
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Hermitian operators correspond to observables, namely measurable quantities. Hermitian
matrices have real eigenvalues, and as per the third postulate of quantum mechanics, these rep-
resent the possible outcomes of an actual measurement.

Unitary operators describe a way in which a quantum system can evolve. To obtain the state
of a system once such evolution has occurred, one applies the appropriate unitary operator to the
state vector. �us, if U describes a particular type of evolution, then a system in the quantum
state ∣ ⟩ can evolve to the state ∣�⟩ = U ∣ ⟩.

.. Projective Measurements

�e product of a ket ∣ ⟩ and a bra ⟨�∣ (in that order) is known as an outer product and it defines
a projection operator ∣ ⟩ ⟨�∣. A projection operator maps any state in the Hilbert space Hn to a
state belonging to a subspace Hm, where m ⩽ n. If this subspace is spanned by a set of basis
vectors ∣u1⟩, ... , ∣um⟩, then the projection operator Pm corresponding to this subspace is given by

Pm =
m∑

i=1

∣ui⟩ ⟨ui ∣

A projection operator is always Hermitian and describes the most common type of measurement
arising in quantum mechanics (only such measurements concern us here).

�e state of a system (which is initially in state ∣ ⟩) after a projective measurement Pj is given
by

1√
⟨ ∣Pj ∣ ⟩

⋅ Pj ∣ ⟩

�e possible outcomes of a quantum measurement are associated with given probabilities as
prescribed by Postulate .

.. Quantum Gates, Circuits and Approximate Universality

In quantum information science, and specifically in the quantum protocols of interest in this
thesis, the specific unitary operators (known as quantum gates by analogy to the gates arising in
boolean circuits) shown in Fig. . arise.
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Operator Symbol Matrix Representation Effect

Hadamard H 1√
2

[
1 1
1 −1

]
H ∣0⟩ = 1√

2
(∣0⟩+ ∣1⟩), H ∣1⟩ = 1√

2
(∣0⟩+ ∣1⟩)

CNot C

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎤⎥⎥⎦ C ∣0, x⟩ = ∣0, x⟩, C ∣1, x⟩ = ∣1, 1− x⟩, x ∈ {0, 1}

Phase S

[
1 0
0 i

]
S ∣0⟩ = ∣0⟩, S ∣1⟩ = i ∣1⟩

�X X

[
1 0
0 1

]
X ∣0⟩ = ∣1⟩, X ∣1⟩ = ∣0⟩

�Y Y

[
0 −1
1 0

]
Y ∣0⟩ = −∣1⟩, Y ∣1⟩ = ∣0⟩

�Z Z

[
1 0
0 −1

]
Z ∣0⟩ = ∣0⟩, Z ∣1⟩ = −∣1⟩

F .. �e principal quantum gates arising in protocols.

We can create versions of these operators suitable for higher–dimensional state spaces by
taking the tensor product with the identity operator, so that, for instance, I ⊗ H ⊗ I represents
the Hadamard gate on the second qubit of a three–qubit system (which has a state space H3,
spanned by 23 = 8 basis vectors). Note that the CNot gate is a two–qubit gate, which has the
effect of ‘flipping’ the state of the second qubit if the first qubit is in state ∣1⟩.

Quantum gates can be depicted graphically so as to form circuits; we will make use of this
graphical notation later in the chapter when describing several protocols. In a quantum circuit
we represent a gate by a box containing the gate symbol, H , a measurement with respect to
the computational basis {∣0⟩, ∣1⟩}⊗n with a meter symbol, NM




 , and these will be linked by
horizontal lines representing ‘quantum wires.’ �e output of a measurement, which is a classical
value, is represented by a double line. Examples of quantum circuits appear in Figs. .,., and
..

A set of quantum gates is said to be universal if any quantum computation can be expressed
in terms only of those gates. We define approximate universality below based on Gruska []:



.. QUANTUM GATES, CIRCUITS AND APPROXIMATE UNIVERSALITY 

Definition . (Approximate Universality). A set of quantum gates is approximately universal if any

unitary transformation U on any qubit register (i.e. joint qubit state) can be performed, with arbitrary

precision � > 0, by a quantum circuit CU,� consisting of the gates from that set.

�eorem .. �e set of quantum gates G = {H ,C ,X ,Y ,Z , �
8
} is approximately universal, where �

8

denotes the operator represented by the matrix⎡⎣1 0

0 e i �
4

⎤⎦
in the computational basis.

As we shall see in Section ., we will be concerned with protocols involving a subset of G ,
which have the property of being efficiently simulable on a classical computer. Of course, only a
quantum computer can perform an arbitrary quantum computation efficiently, and hence simulate
a quantum circuit involving a universal set of gates (see []).

... Review of Fundamental Group–�eoretic Concepts. We now review basic ideas from
group theory [], including the definition of a group, and the concept of group action.

Definition .. A group is a set G equipped with an associative binary operation ★ in G and an identity

element e, and is such that all elements have an inverse. Formally:

∀x , y , z ∈ G : x ★ (y ★ z) = (x ★ y) ★ z

∃e ∈ G : x ★ e = e ★ x = x

∀x ∈ G .∃x−1 ∈ G : x ★ x−1 = x−1 ★ x = e

Definition .. A group (G , ★) is commutative or abelian if ∀x , y ∈ G : x ★ y = y ★ x .

Definition .. A subgroup of a group (G , ★) is a subset of G equipped with the operation ★ which is

also a group.

In the following, let A be a subset of a group G .
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Definition .. �e centralizer C (A) of A in G is defined by

C (A) = {c ∣c ∈ G and for all a ∈ A, c ★ a = a ★ c} (.)

Definition .. �e normalizer N(A) of A in G is defined by

N(A) = {n∣n ∈ G and nAn−1 = A} (.)

Definition .. �e action of a group G on a set X is a morphism � : G × X → X , (g , x) 7→ g ⋅ x ,

which satisfies:

∀g , g ′ ∈ G .∀x ∈ X : g ′ ⋅ (g ⋅ x) = (g ′ ⋅ g) ⋅ x

∀x ∈ X : e ⋅ x = x

where e is the identity element.

Definition .. Given a set X and a group G , we define:

∙ the orbit of x ∈ X as Gx = {y ∈ X , ∃g ∈ G : y = g ⋅ x}

∙ the stabilizer of x ∈ X as Gx = {g ∈ G : g ⋅ x = x}

.. �e Stabilizer Formalism

�e stabilizer formalism arises when we start to identify quantum states by the unitary oper-
ators which fix, or stabilize, them. For example, we can uniquely identify the EPR state

∣∣Ψ+
〉

=
1√
2

(∣00⟩+ ∣11⟩) (.)

by the set of operators {X ⊗X ,Z ⊗Z}. �is set of operators is unique [] for the quantum state
∣Ψ+⟩; we can also regard ∣Ψ+⟩ as the +-eigenvector of these operators, since

(X ⊗ X )
∣∣Ψ+

〉
=

∣∣Ψ+
〉

(Z ⊗ Z )
∣∣Ψ+

〉
=

∣∣Ψ+
〉



.. THE STABILIZER FORMALISM 

We can characterise not only specific states, but entire subspaces of the Hilbert space Hn

by specifying the set of operators which stabilize elements of those subspaces. �is has proved
to be very useful in the design of quantum error–correcting codes [, , , ]. In order for
quantum error correction to succeed, errors have to be easily distinguishable (the formal criterion
for distinguishability of codewords is given in the works previously cited). Using the concept of
stabilizer operators, it is possible to systematically construct good quantum error correction codes.
In particular, one can design codes such that a single error will map +1-eigenvectors of a chosen
operator to −1-eigenvectors. �is is detailed in the notes by Bacon [].

�e unitary operators which characterise uniquely a subspace of Hn are elements of the Pauli

group of dimension n, denoted Pn. �e Pauli group of dimension 1 is the group formed by the
Pauli operators {X ,Y ,Z} and the identity operator I , along with constant multiplicative factors
of ±1 and ±i , under the operation of matrix multiplication. �e multiplication table, or Cayley

table, for this group P1 is partially shown below.

× I X Y Z
I I X Y Z
X X I iZ −iY
Y Y −iZ I iX
Z Z iY −iX I

�e Pauli group of dimension n is formally defined using the tensor product:

Pn =

{
n⊗

j=1

Aj where Aj ∈P1, j = 1, 2, ... n

}
(.)

A subgroup of Pn which stabilizes the states in a certain subspace of Hn (this being known
as the stabilizer subspace) is a stabilizer group¹. We can uniquely characterise a stabilizer group
of interest by its generators or its generating set. �e generating set of any group is defined as a
set whose elements can be combined under the group operation to form the elements of the full
group. It is a well-known fact of group theory that a finite group (G , ★) has a generating set of
length at most log2 ∣G ∣ where ∣G ∣ denotes the number of elements in G ; the stabilizer group of
¹In this thesis, we will consistently use the American spellings of the verb stabilize and the noun stabilizer, especially
because the latter is a scientific term which we use in a specific sense.
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an n–qubit state will thus have a generating set of length log2 2n = n. �erefore, only n Pauli
operators are needed to uniquely specify the stabilizer group of a particular state.

�e most important aspect of the stabilizer formalism is the way in which certain unitary
operators (namely the CNot gate, the Hadamard gate, and the phase gate) act on stabilizer groups.
In particular, these operators are a generating set of the Clifford group in Hn. �e Clifford group of
quantum gates (note the abuse of terminology here; the term “Clifford group” is used in a much
more abstract way in mathematics texts, but we are using the term as it applies in the context of
the stabilizer formalism) is the normaliser of the Pauli group. �us, if S is a Clifford operator (i.e.
a member of the Clifford group), and P is any Pauli operator,

SPS† = P ′ (.)

where P ′ is also a Pauli operator and S† denotes the adjoint of S (see also Definition .). �e
effect of these Clifford group gates (under Hermitian conjugation as expressed in Eq. (.), with
S corresponding to the operation, P to the input, and P ′ to the output) on the Pauli operators is
shown below.

Operation Input Output
CNot X ⊗ I X ⊗ X

I ⊗ X I ⊗ X
Z ⊗ I Z ⊗ I
I ⊗ Z Z ⊗ Z

H X Z
Z X

S X Y
Z Z

X X X
Z −Z

Y X −X
Z −Z

Z X −X
Z Z

F .. �e effect of the Clifford group gates on the Pauli gates under Her-
mitian conjugation.
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If one confines attention to stabilizer states and Clifford group operations, then they are work-
ing within the scope of the stabilizer formalism. Further details on operations, as well as mea-
surements within the stabilizer formalism, are to be found in the standard references [, , ,
].

.. Quantum Protocols

Quantum protocols can be succinctly described using the quantum circuit model [, ].
�e general form of a quantum protocol involves a sequence of quantum transformations and
measurements on an initial state ∣ 0⟩. Communication in the quantum realm typically may refer
to interactions that are caused by measuring entangled states, rather than physical transfers of data
from one location to another. �is is why quantum communication protocols can be described
using circuits, whereas this is not possible for classical protocols.

In a typical quantum protocol, the different parties involved share an entangled state. In other
words, each party possesses one of several particles which are entangled. �e act of measuring
part of an entangled state can be regarded as a transmission of information, since the effect of
the measurement is to determine the other components of the state in a unique way. �is is
exemplified by the quantum teleportation protocol [].

�ere are some quantum protocols which do not employ the phenomenon of entanglement
at all. �e BB protocol [] for quantum key distribution is an example; it actually involves the
physical transmission of qubit states over a quantum channel. �is is also considered a form of
quantum communication.

... Superdense Coding. �e simplest quantum protocol which we will use to illustrate
our techniques is the superdense coding scheme []. �is scheme makes it possible to encode
a pair of classical bits on a single qubit. With superdense coding, a quantum channel with a
capacity of a single qubit is all that is necessary to transmit twice as many bits as a serial classical
channel.

�e setting for superdense coding involves two parties, conventionally named Alice and Bob,
who are linked by a quantum channel and share a pair of entangled qubits. �e objective is for
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Alice to communicate the binary number xy — henceforth termed the message and denoted by
(x , y), with x , y ∈ {0, 1}— by transmitting a single qubit to Bob. �e superdense protocol takes
advantage of the correlations between qubits P1 and P2, which are in an entangled quantum state.
Alice essentially influences this state in such a way that Bob’s measurement outcome matches the
message of her choice. �e quantum circuit diagram for the superdense coding procedure is shown
in Fig. ..

i = 2x + y ∙
P1 : ∣0⟩ H ∙ �i ∙ H

NM



 x ′

P2 : ∣0⟩ �������� ��������
NM




 y ′

F .. Quantum circuit diagram for the superdense coding protocol.

Quantum circuit diagrams are a convenient means for expressing computations on qubits;
while these are mostly self–explanatory, the reader is referred to standard texts [, ] for expla-
nations of the notation. For clarity, we describe superdense coding in full below.

() Two qubits, P1 and P2, are placed in an entangled state using the Hadamard and CNot

operations. Alice is given P1, and Bob is given P2.
() Alice selects a message, (x , y), and applies the i th Pauli operator, �i , to P1, where i =

y + x(2 + (−1)y ). She transmits this particle to Bob.
() Bob applies the CNot gate from P1 to P2, and then he applies the Hadamard gate to the

former.
() Bob measures the two particles, thus obtaining a pair of classical bits, (x ′, y ′). If no

disturbance has occurred, this pair of bits will match the original message, i.e. (x ′, y ′) =

(x , y).

... Quantum Teleportation. �e quantum teleportation protocol [] involves a series of
operations on a three–qubit system. �e quantum circuit for teleportation is shown in Fig. ..
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∣ ⟩ ∙ H NM



 ∙

∣0⟩ H ∙ ��������
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 ∙

∣0⟩ �������� �i ∣ ⟩

F .. Quantum circuit diagram for the teleportation protocol.

�e purpose of the protocol is to allow the transmission of qubit ∣ ⟩ from one user (‘Alice’) to
another (‘Bob’) using only a classical communications line. Alice possesses a qubit ∣ ⟩ = � ∣0⟩+

� ∣1⟩ to start with. An entangled pair of particles is created using an EPR source, and one particle
(qubit ) is given to Alice, the other (qubit ) to Bob (creation of the EPR pair 1√

2
(∣00⟩ + ∣11⟩)

can be performed by applying the Hadamard (H) and CNot operations to an initial two-particle
state ∣00⟩, represented by the second and third wire in the diagram of Fig. .). �en the protocol
proceeds as follows:

() Alice performs the CNot operation with qubit ∣ ⟩ as control and qubit  as target.
() Alice performs the Hadamard (H) operation on qubit .

After steps  and , qubit  is entangled with qubit ∣ ⟩.
() Alice measures qubit ∣ ⟩ in the standard basis and records the outcome, c1.
() Alice measures qubit  in the standard basis and records the outcome, c2.
() Alice transmits the values of c1 and c2 over a classical communication channel.
() Bob applies the Pauli operator �c to qubit , where c = c2 + c1(2 + (−1)c2), with the

convention that �0 ≡ I ,�1 ≡ X ,�2 ≡ Y ,�3 ≡ Z

Bob’s qubit, i.e. qubit , is now in the state in which ∣ ⟩ was originally.

... Quantum Error Correction. Our third example is the quantum bit–flip code for error
correction []. In order to correct a single bit flip error, which may occur during the transmission
of a single qubit state, this code represents the state by using a collection of three qubits. In
particular, the qubit state ∣0⟩ is encoded as ∣000⟩ and the state ∣1⟩ is encoded as ∣111⟩. A bit flip
error on the second qubit, for example, transforms ∣000⟩ into ∣010⟩.
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In order to detect such an error, two additional qubits are used; they are known as ancillas. By
applying a sequence of operations and measurements to the ancillas, the so–called error syndrome

is obtained, which determines the location of the error. �en, the �1 operator is applied to the
erroneous qubit, thus restoring the initial quantum state of the –qubit system. �e quantum cir-
cuit for the bit–flip code is given in Fig. .. In the figure, �1,i denotes the operator corresponding
to the application of �1 to the i th qubit.

∣ ⟩ ∙ ∙ ∙ ∙
�1,i

∣ ⟩
∣0⟩ �������� ∙
∣0⟩ �������� ∙

∣0⟩ �������� ��������
NM




 ∙

∣0⟩ �������� ��������
NM




 ∙

F .. Quantum circuit diagram for the qubit bit–flip code.

For the diagram we have assumed that a bit–flip error does occur prior to the computation of the
syndrome.

... Conjugate Coding. In Wiesner [] a scheme is proposed that allows a user to trans-
mit two messages, either but not both of which may be received by another user; this task is
known as oblivious transfer []. Let A denote the first message, and B the second message,
where A ∈ {0, 1}m and B ∈ {0, 1}n. �e bits in each message are encoded into the polari-
sations of a stream of photons, which are transmitted over a quantum channel, such as a fibre
optic cable.

Transmission proceeds as follows. At each time step, a coin is flipped, and depending on
the outcome, a photon is prepared so as to represent a bit from one of the two sequences. If
the outcome is heads, the i th bit in A is mapped to a photon with a rectilinear polarisation of 0∘

or 90∘. If the outcome is tails, the i th bit in B is mapped to a photon with a circular polarisation
of 45∘ or 90∘. In the latter case, the polarisation can be expressed as a superposition of the two
rectilinear polarisations (this will become clearer when the mathematical formalism is introduced
in the next chapter).
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�e receiver uses an analyser (in practice, typically a birefringent crystal) to measure the bit
sequence from the photon stream. �e analyser is configured to separate the components of
the stream into two different beams (corresponding to bit values of 0 and 1, respectively), either
with respect to the rectilinear polarisation, or with respect to the circular polarisation. It is not
possible to measure the rectilinear and circular component of polarisation simultaneously, and the
process of measuring one component will collapse the state of the photons so that all information
about the other component is lost, as dictated by the laws of quantum mechanics. Measuring a
photon that is polarised horizontally or vertically with an analyser that is configured for circular
polarisations will yield a random outcome.

If the transmitter encodes and sends all the bits in A and B , and the receiver measures each
photon received individually with a fixed analyser configuration, then all the bits in one of the two
sequences will be received correctly, while those of the other sequence will only be partly correct
(i.e. when the measurement happens to produce an outcome that matches the original bit). �us
only one of the two messages is correctly transmitted.

Wiesner pointed out that this conjugate coding scheme is only practical if the receiver performs
simple, individual measurements on the photons. �ere exist complex, collective measurements
that would enable a receiver to correctly decode both bit sequences, although they are not easily
implementable in hardware.

... Quantum Key Distribution using BB. Bennett and Brassard [] proposed a pro-
tocol for establishing a secret random bit string between two users, with the intention that such a
string could be used as a cryptographic key. �eir protocol, referred to simply as BB, involves a
variant of conjugate coding. �e use of quantum channels, which cannot be tapped or monitored
without causing a noticeable disturbance, makes it possible to achieve unconditionally secure key
establishment between two users. �e presence of an enemy is made manifest to the users of such
channels through an unusually high error rate.

BB assumes that the two legitimate users are linked by two specific channels, which the
enemy also has access to a classical, possibly public channel (which may be passively monitored
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but not tampered with by the enemy) and a quantum channel (which may be tampered with by
an enemy). By its very nature, this channel prevents passive monitoring.
�e first phase of BB involves transmissions over the quantum channel, while the second phase
takes place over the classical channel. �e steps in the protocol are the following:

() Alice generates a random binary sequence s .
() Alice chooses which type of photon to use (rectilinearly polarised or circularly polarised)

in order to represent each bit in s . Let b denote the sequence of choices of basis for each
photon.

() Alice uses an analyser to create a stream p of polarised photons whose polarisations rep-
resent the bits in s . Alice sends the photon sequence p to Bob over a suitable quantum
channel, such as an optical fibre.

() For each photon received, Bob makes a guess as to whether it is rectilinearly or circularly
polarised, and sets up his measurement device accordingly. Let b′ denote his choices of
basis.

() Bob measures each photon with respect to the basis he has chosen, producing a new
sequence of bits s ′.

() Alice and Bob communicate over a classical, possibly public channel. Specifically, Alice
tells Bob her choice of basis for each bit, and he tells her whether he made the same
choice. �e bits for which Alice and Bob have used different bases are discarded from s

and s ′.

What is important to understand about this protocol is that, only if Bob’s guess is correct is
it certain that he will make an accurate measurement. If Bob attempts to measure a rectilinearly
polarised photon with a circularly oriented measurement device (and vice versa), the outcome
will be, at random, either 0 or 1; the original bit value represented by the photon is encoded in
its rectilinear polarisation, all information about which is lost. So, an incorrect choice of mea-
surement basis randomises the outcome of a measurement, which is only accurate in this case
with probability 1

2
. If n photons are transmitted in total, there is a probability (1

2

)n that Bob will
measure all of them correctly.
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A similar logical argument allows Alice and Bob to detect the presence of an eavesdropper,
Eve. Just as Bob, Eve is incapable of knowing which type of photon is used to represent each bit.
�erefore Eve must guess which measurement basis to use and, since it is impossible for her to
duplicate the state of each received photon (due to the no–cloning theorem), she must prepare
a new photon to send to Bob. Eve’s presence is made manifest to Alice and Bob because her
measurements necessarily cause a disturbance to the states of the transmitted photons.

�e criterion for detecting Eve’s presence can be formulated as follows. For the i th bit chosen
by Alice, si , there will correspond a choice of polarisation basis, bi , which is used to encode the bit
to a photon. If Bob’s chosen measurement basis is b′i and the outcome of his measurement is s ′i ,
then b′i = bi should necessarily imply s ′i = si . If an eavesdropper tries to obtain any information
about si , a disturbance will result and, even if Bob and Alice’s bases match, s ′i ∕= si . �is allows
Alice and Bob to detect an eavesdropper’s presence on a noiseless channel, and to reschedule their
communications accordingly.

�e basic BB procedure is incomplete in the following sense: whether an eavesdropper is
present or not, there will still be errors in Bob’s key sequence. �e final step of BB, which was
described above merely as a comparison of encoding and measurement bases, is usually much
more elaborate. �ere are two parts involved: secret key reconciliation and privacy amplification.

Secret key reconciliation [] is a special error correction procedure which eliminates:

∙ errors due to incorrect choices of measurement basis,
∙ errors induced by eavesdropping, and
∙ errors due to channel noise, if any exists.

Reconciliation is performed as an interactive binary search for errors. Alice and Bob divide their
bit sequences into blocks and compare each other’s parity for each block. Whenever their respec-
tive parities for any given block do not match, they divide it into smaller blocks and compare
parities again, repeating this process until the exact location of the error is found. When an error
has been located, Alice and Bob may decide to discard the corresponding bit, or agree on the cor-
rect value. During this process, Alice and Bob can communicate over a classical channel, which
is by definition insecure and accessible to an eavesdropper.
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Since valuable information about the key may be obtained by an eavesdropper during rec-
onciliation, Alice and Bob must perform a final step in order to establish a perfectly secret key:
this is known as privacy amplification []. �e process of reconciliation results in a bit sequence
which is common to Alice and Bob, but some of its bits may be known to an eavesdropper who
has tapped the classical channel. To eliminate this leaked information, Alice and Bob must apply,
in common, a binary transformation (usually, a random permutation) to their sequences, and dis-
card a subset of bits from the result. �e precise choice of transformation and the number of bits
discarded, of course, determine the amount of secrecy of the final key. �e objective of this step is
to minimise the quantity of correct information which the eavesdropper may have obtained about
Alice and Bob’s common bit sequence. At the end of the privacy amplification procedure, Alice
and Bob’s bit sequences can be proven to be identical and absolutely secret, with arbitrarily high
probability.

Mayers [] proved the unconditional security of quantum key distribution under all attacks
permitted by quantum mechanics. �at is to say, there is no general attack that would allow
an enemy to successfully eavesdrop and obtain a key established using BB with secret–key
reconciliation and privacy amplification.

Variations of the BB protocol have been proposed; these include B (proposed by Bennett
[]) and Ekert’s protocol []. �e latter makes use of the properties of entanglement.

... Quantum Coin–Flipping. Quantum coin–flipping [, ] enables two users, Alice
and Bob, to establish a common random bit x through the transmission of a single qubit q and
its measurement. �e protocol relies on the principle that, if Alice and Bob use compatible bases
for preparation and for measurement of this qubit, their bit values will be guaranteed to match
by the laws of quantum mechanics. Incompatible bases will produce a matching bit value only
with probability 1

2
, although in this case the protocol is repeated and the bit discarded. �ere are

various possible attacks that may be performed by an enemy, which would enable him or her to
compromise the final bit value.

�e detailed steps of the protocol are as follows:
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() Alice selects b, x uniformly at random, and sends ∣ b,x⟩ to Bob.
() Bob selects bit g uniformly at random and sends it to Alice.
() Bob selects b; he measures with respect to basis b̂ and obtains measurement result x̂ .
() Alice sends b, x to Bob.
() If b = b̂ and x ∕= x̂ , Bob aborts the protocol because Alice has cheated. If b ∕= b̂ then

the protocol is restarted.
() �e final common bit is c = b ⊕ g , where ⊕ denotes the exclusive-OR binary operator.

... Quantum Secret Sharing. Quantum secret sharing protocols [] are designed to ad-
dress the following classical problem.

Problem . (�reshold Secret Sharing). A dealer holds a secret s , and must send this secret to n players

such that:

∙ any k or more players can reconstruct the secret

∙ all sets of fewer than k players as well as eavesdroppers are denied any access whatsoever to the

secret.

�e value of k is known as the threshold, and is a parameter of the protocol in question.
Classical solutions to this problem do achieve unconditional security, but only on the assumption
that the channels between the dealer and the player, and the channels between players, are private.
Quantum protocols for this problem to address this problem have two main features:

(i) the use of quantum channels to protect against eavesdropping (thus fulfilling the requirement
for private channels)

(ii) the use of quantum error correction to protect quantum secrets.

Markham and Sanders [] developed a formalism that embodies both classical and quan-
tum secret sharing protocols in a uniform fashion. In their setting, there are three categories of
protocols:

CC: protocols handle a classical secret (i.e. a single bit) and assume private point-to-point
channels
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CQ: protocols handle a classical secret but use quantum key distribution to allow for public
channels

QQ: protocols assume a quantum secret (i.e. a qubit), quantum channels between the dealer
and each of the players, and quantum or classical channels between the players.

Of interest for our purposes is only the CC case, and we note here that a classical secret can be
trivially represented using a qubit. �us a CC protocol is not necessarily a classical protocol; it can
be a quantum protocol – in the sense that qubits, rather than classical bits, are being exchanged.
All three cases can be presented uniformly using quantum information (and in particular, graph
states). �e local equivalence of graph states and stabilizer states [] makes these protocols
particularly relevant for our analyses, since we will be focussing on protocols involving the latter
class of quantum states.

�e formalism in [] is used to build CC, CQ, and QQ protocols for specific values of k and n,
as well as a general case where k = n. In Section . we will look at a model of a CC protocol
with k = n = 3.

We will need some background on graph states in order to understand the presentation of
these protocols.

.... Graph States. A graph state is a multi-qubit state which is presentable in the form of a
graph such that:

∙ a node corresponds to a qubit in the state ∣+⟩ = 1√
2
(∣0⟩+ ∣1⟩)

∙ an edge between two nodes corresponds to the application of a Controlled–Z operation.

�e reader is referred to [] for formal definitions and details.

Example .. �e graph state

∙

∙
can be expressed in state vector form as follows (where ∧Z denotes the Controlled-Z gate):

∧Z ∣+ +⟩ = ∧Z
(

1√
2

(∣0⟩+ ∣1⟩)⊗ 1√
2

(∣0⟩+ ∣1⟩)
)

=
1

2
(∣00⟩+ ∣01⟩+ ∣10⟩ − ∣11⟩)
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.... �e Structure of the Protocol. �e structure of a CC type, graph state–based secret shar-
ing protocol with k = n is as follows.

() �e dealer prepares a graph state ∣ ⟩.
() �e dealer selects a random vertex v of the graph state, and encodes onto it the secret

bit s . To do this, he applies the Z gate to the qubit corresponding to this vertex.
() �e dealer distributes the qubits in the state to the players (by sending the i th qubit to

the i th player).
() �e players measure the qubits as follows:

∙ the player receiving the qubit corresponding to vertex v measures his qubit in the
diagonal basis {∣+⟩, ∣−⟩}
∙ the other players measure their qubits respectively in the computational basis.

() �e players communicate their respective measurement outcomes to each other.
() �e final outcome of the protocol is obtained by computing the XOR of all the players’

outcomes together.

�us the players can obtain the secret bit s which the dealer has originally encoded onto a
chosen vertex of the initial graph state. �e idea here is that, unless all players coöperate, they
will not be able to correctly obtain the original secret. Variations of the protocol do not require
all n players to collaborate, as we have assumed here, but we will restrict ourselves to the k = n

case.

.. Concluding Remarks

In this chapter we have presented the main background concepts relevant to the subject of
this thesis. In particular we have focussed on the formalism of quantum mechanics and the basic
notions of qubit, quantum gate, and measurement. We have also surveyed a number of quantum
protocols and seen how the use of quantum phenomena is used for information exchange. �e
rest of the thesis will be devoted to a particular method of formalising such protocols and verifying
their correctness in an automated manner.



CHAPTER



PROBABILISTIC MODEL CHECKING
AND EFFICIENT SIMULATION

Electricity is actually made up of extremely tiny particles called electrons,

that you cannot see with the naked eye unless you have been drinking.

— Dave Barry

T       at modelling and verifying simple quantum
protocols, such as superdense coding, quantum teleportation, and quantum error cor-
rection. We focus on the use of the probabilistic model checker  and describe

fundamental techniques for adapting this tool to the analysis of such protocols; a  model
of superdense coding is presented as a demonstration of this approach. While this approach does


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produce the expected results, it has significant shortcomings, namely, it can handle only very small
protocols (with up to  qubits in practical terms).

Our purpose here is to demonstrate in which ways classical model checking tools are unsuit-
able for analyses of quantum protocols. In the process we will discuss the issue of representing a
finite, closed set of quantum states and quantum operators. �is will lead is in a natural way to
consider the Gottesman–Knill theorem [] and the more general question of efficiently simulat-
ing quantum protocols on a classical computer. As we shall see, efficient simulation precludes the
possibility of modelling arbitrary quantum protocols; such protocols require the ability to repre-
sent a universal set of quantum gates, and the quantum states which arise from their application.

�is chapter is based on material from the paper []. �e proof of closure in Section . is
originally due to Simon Gay.

.. Adapting the Probabilistic Model Checker PRISM

 [] is an acronym for probabilistic symbolic model checker, and is designed for modelling
and validating systems which exhibit probabilistic behaviour. Whereas a logical model checker,
such as  [], only states whether a system model � satisfies a temporal formula Φ, a tool
such as  computes the probability with which such a formula is satisfied, i.e. the value of
P�,Φ = Pr{� ∣= Φ} for given � and Φ. �e models catered for by  may incorporate specific
probabilities for various behaviors and so may the formulas used for verification. Probabilistic
models and –like tools find applications in numerous areas of computer science where ran-
dom behaviour is involved. Oft–cited applications are randomized algorithms, real–time systems
and Monte Carlo simulation. �e application of probabilistic model checking to quantum systems
is deemed appropriate, since such systems manifest probabilistic behaviour during the process of
measurement; to reason about such phenomena one should account for this.

 has a built–in specification language based on Reactive Modules, originally due to Alur
and Henzinger []. Using this language the user can describe probabilistic behaviour. Internally,
a  model is represented by a probabilistic transition system. In such a system, each step in a
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computation is represented by a move, or transition, from a particular state s to a distribution �
of successor states [, ].

�e probabilistic temporal logic  [] is used as the principal means for defining properties
of systems modelled in . It suffices for our purposes to remind the reader of the meaning
of the operator U , known as “unbounded until”. �e formula Φ1 U Φ2 expresses the fact that Φ1

holds continuously from the current state onward, until eventually Φ2 becomes true. �e property
P ⩾ 1 [Φ1 U Φ2] states that the formula Φ1 U Φ2 is true with certainty, i.e. with a probability of
unity; we use  to check whether such a property holds in a given model.

In order to use a classical probabilistic model checker to verify quantum protocols, we need
to model the quantum states that arise in a given protocol, and the effect of specific quantum
operations on these states.  itself only allows positive integer and boolean variables to be
used in models. So how can we model the states of quantum systems, and the quantum operations
arising in protocols, using only classical data types and arithmetic?

Single qubits can be in a superposition of two states, while classical variables can only take on
a single value in any given state. �e coefficients of these states can be any two complex numbers
whose moduli squared sum to unity, and there is an uncountable infinity of these; of course, 
can only work with a finite state space. Furthermore, quantum systems consisting of many qubits
can be in entangled states, which, unlike classical systems, cannot be decomposed into products
of individual states. What is needed, therefore, is a means of representing quantum states fully
and consistently, in a form that  can handle.

Of all the possible quantum states of an n–qubit system, we identify the finite set of states
which arise by applying the operations CNot, Hadamard (H), and �0,�1,�2,�3 to the input state
∣0⟩⊗n, and all the states that arise from subsequent applications of these gates to the resulting
states. We confine our analyses to protocols that involve only this restricted set of operations. At
present, determining which states belong to this set is done manually.

Consider a very simple system: a single qubit, being acted upon through the Hadamard gate
and through measurement in the standard basis. For our purposes, the state of the qubit may be
∣0⟩, ∣1⟩, or an equal superposition of the two. In fact, these states are sufficient to model the BB
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protocol for quantum key distribution []. �e quantum states which we need to represent in
order to model this simple system are thus:

∣0⟩ , ∣1⟩ ,
1√
2

(∣0⟩+ ∣1⟩) , and 1√
2

(∣0⟩ − ∣1⟩)

To model this small, finite set of quantum states, which is closed under the operation of the
Hadamard gate and the Pauli operators, we represent each state by assigning a unique integer
from  to  to it, and we use straightforward transitions from one integer value to another to
model the action of the gate. We call this state space enumeration.

�e actual  model for this, as well as the possible results of measurement in the com-
putational basis, is listed below.

probabilistic

module Qubit

state : [0..3]; // 0 is |0>, 1 is |1>, 2 is |+>, 3 is |->

result : [0..1]; // Result of measurement in standard basis

[hadamard] (state=0) -> (state’=2);

[hadamard] (state=1) -> (state’=3);

[hadamard] (state=2) -> (state’=0);

[hadamard] (state=3) -> (state’=1);

[measure] (state=0) -> (state’=0) & (result’=0);

[measure] (state=1) -> (state’=1) & (result’=1);

[measure] (state=2) -> 0.5 : (state’=0) & (result’=0)

+ 0.5 : (state’=1) & (result’=1);

[measure] (state=3) -> 0.5 : (state’=0) & (result’=0)

+ 0.5 : (state’=1) & (result’=1);

endmodule

A protocol such as superdense coding can be expressed as a step-by-step interaction with a
two–qubit system. In order to model the states of – and –qubit systems, the quantum operators
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and the measurements which arise in this and related protocols such as teleportation, we have
developed a code generation tool called . �is tool generates a  code fragment,
or module, in which each quantum state is represented by a unique positive integer. Every quan-
tum operator used in a particular protocol is coded as a set of deterministic transitions from one
quantum state to another.  calculates these transitions by multiplying the unitary ma-
trix, which corresponds to a particular operator, with each quantum state vector of interest. A
measurement is modelled by a set of probabilistic transitions, leading to the various possible out-
comes with equal probability. For simplicity, we have only considered states whose measurement
outcomes are all equiprobable, although  does allow us to model the more general case.

From the overall state space for a –qubit system, a certain subset is closed under the CNot,
Hadamard and Pauli operations. �is subset consists of the following states, which are  in total:

∙  states corresponding to the four basis vectors, i.e. ∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩ .

∙  states which are sums of two basis vectors, i.e. of the form 1√
2
∣xy⟩ ± 1√

2
∣x ′y ′⟩ with

x ∕= x ′, y ∕= y ′ and x , x ′, y , y ′ ∈ {0, 1}.

∙  states which are sums of all four basis vectors.

Remark .. �e above set of  states is closed under the CNot, Hadamard and Pauli operations. �is

is a direct consequence of the stabilizer formalism.

P. �ese states can be expressed in the following way.

() �e single basis vectors: ∣00⟩, ∣01⟩, ∣10⟩, ∣11⟩

() �e states containing two basis vectors can be separated into three subclasses:
(a) 1√

2
(∣0⟩ ± ∣1⟩)⊗ ∣0⟩, 1√

2
(∣0⟩ ± ∣1⟩)⊗ ∣1⟩

(b) ∣0⟩ ⊗ 1√
2

(∣0⟩ ± ∣1⟩), ∣1⟩ ⊗ 1√
2

(∣0⟩ ± ∣1⟩)

(c) 1√
2
(∣00⟩ ± ∣11⟩), 1√

2
(∣01⟩ ± ∣10⟩)

() �e states containing four basis vectors can be expressed in any of the forms:
(a) 1√

2
(∣0⟩ ± ∣1⟩)⊗ ∣0⟩ ± 1√

2
(∣0⟩ ± ∣1⟩)⊗ ∣1⟩

(b) ∣0⟩ ⊗ 1√
2

(∣0⟩ ± ∣1⟩) ± ∣1⟩ ⊗ 1√
2

(∣0⟩ ± ∣1⟩)

(c) 1
2
(∣00⟩ ± ∣01⟩ ± ∣10⟩ ± ∣11⟩)
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It is obvious that each set (.)–(.) individually is closed under each �i (applied to either
qubit) and CNot these operations are permutations of the basis vectors. Each set has an evident
symmetry among the basis vectors (taking (.a) and expanding (.) into an explicit list of states).
Applying H to the first qubit gives a bijection between (.) and (.a), between (.b) and (.a), and
between (.c) and (.b). Applying H to the second qubit is similar. △

Our  tool enumerates these states and calculates the transitions corresponding to
the various operations. �e resulting  module can be included as part of any model which
involves measurements and the application of these operations to a system of two qubits.

�e situation with a system of three qubits is similar. We have developed a –qubit version of
, which gives us the ability to model protocols such as those for quantum teleportation
and quantum error correction, as detailed in [].

... Analysing the Superdense Coding Protocol with PRISMGEN. �e simplest quan-
tum protocol which we will use to illustrate our techniques is the superdense coding scheme [].
�is scheme makes it possible to encode a pair of classical bits on a single qubit. With superdense
coding, a quantum channel with a capacity of a single qubit is all that is necessary to transmit
twice as many bits as a serial classical channel. Superdense coding is essentially a computation
on a two–qubit system; therefore, the  model of this protocol uses the –qubit version of
. We begin with a description of the protocol, and proceed to show how it is modelled
and verified with .

�e model of superdense coding consists of four  modules. Of these four, one module is
generated automatically by  and describes the possible states of the two qubits. �ere is
a module specifying Alice’s actions, and similarly one for Bob’s. �e actions in these two modules
correspond exactly to the successive application of quantum gates in Fig. ...

Before we examine the workings of this model in detail, consider the following observations,
which highlight the capabilities of . In the  model, Alice’s first action is to select
one of the four possible messages (represented by the integers , , , ); each message has an
equal probability, 1

4
, of being chosen. �is is an assumption we made when constructing this
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F .. Internal probabilistic state transition system corresponding to the
 model of superdense coding.

model, but it is possible to specify different respective probabilities for the four choices. Another
point worth noting is that, depending on which message is chosen, the protocol proceeds in one
of four distinct ways;  actually considers all these possibilities when testing the validity of
a property. �is is precisely why we advocate the use of model-checking for these analyses, as
opposed to simulation of quantum protocols, proposed elsewhere; simulators only treat one of
several possible executions at a time.

 interprets the superdense coding model as the probabilistic transition system¹ depicted
in Fig. .. �e nodes in the graph correspond to the internal state numbers which  assigns
to each step in the protocol. Each internal state number corresponds to a tuple with the states of
all variables in a particular model.

Read from left to right, Fig. . shows the succession of internal state numbers for the four
possible messages that Alice may send to Bob in superdense coding, �e initial state, labelled , is
where all variables are first set. In internal state , Alice makes her choice of message, setting the
msg variable accordingly and leading to one of the internal states , , , or  with equal probability.
�e succession of ’s internal states in Table , which includes the value of each variable in the
model, corresponds to the case in which Alice has chosen the message (, ) and, hence, applied
the �1 operator to her qubit. �e quantum state of the two-qubit system is represented by the
variable state, which corresponds to the actual quantum state indicated in the final column of
this table.
¹Note that the probabilities in this diagram arise from Alice’s choice of message, not from measurement outcomes.
In general, it is measurement that produces probabilistic transitions.
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State number alice_step msg bob_step result state Quantum State
      ∣00⟩
      1√

2
(∣00⟩+ ∣11⟩)

      1√
2

(∣00⟩+ ∣11⟩)
      1√

2
(∣01⟩+ ∣10⟩)

      1√
2

(∣01⟩+ ∣10⟩)
      1√

2
(∣00⟩ − ∣10⟩)

      ∣10⟩
      ∣10⟩
      ∣10⟩

T . �e transitions of the  model for superdense coding for the case
when the message chosen by Alice is (,).

When Bob has finished his measurement, and the dense coding protocol terminates, one of
the internal states , , ,  is reached, corresponding to the final nodes in the graph in Fig.
.. �e property required for verification must be expressed in terms of the final state. When the
dense coding protocol terminates, Bob’s measurement result, i.e. the pair of classical bits (x ′, y ′),
must match Alice’s original choice (x , y). �is requirement is expressed using  as follows:

P ⩾  [ true U ((protocol_finished) ∧ (result = msg)) ] (.)

�e  formula in Eq. . stipulates that the probability of Bob’s result matching Alice’s
choice is . Model checking with  confirms that this property holds (i.e. this property is
true in all executions of the model). We have thus proven, using the  model checker, that
the dense coding protocol always succeeds in transmitting two classical bits using a single qubit.
Clearly, this is not difficult to prove by hand; however, we have used superdense coding as a simple
demonstration of this first approach to the verification of quantum protocols.

... Analysing Quantum Teleportation using PRISMGEN. Our next example is the
quantum teleportation protocol [], which involves a computation on three qubits.

�e  model of teleportation is similar in appearance to that for superdense coding, and
it is not included here due to lack of space. It is a transformation on a collection of three qubits, as
opposed to the two for superdense coding. �is calls for the -qubit version of . Other
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than this, the  model itself is unremarkable, and matches the structure of the quantum
circuit for teleportation, given in the appendix. Verifying the teleportation protocol with 
is more involved. Short of manual calculation, it is not possible to predict what the quantum
state of the entire -qubit system will be at the end of the teleportation protocol; indeed, there
are several possible final states, depending on which quantum state Alice chooses to transmit to
start with. We are interested in checking that the state of Bob’s qubit matches Alice’s original
qubit state, ∣ ⟩, which is assumed to be one of ∣0⟩ , ∣1⟩ , ∣+⟩ ∣−⟩ . To formulate a usable property
for verification, we need to express this requirement in terms of the overall state of the –qubit
system.

Formally, the specification of the teleportation protocol is this: if the initial state of the -
qubit system is of the form ∣ ⟩ ⊗ ∣00⟩ , then the final state will be of the form ∣�⟩ ⊗ ∣ ⟩, where
∣�⟩ is a two–qubit state. Let’s consider this in more detail. If Alice chooses to teleport ∣ ⟩ = ∣0⟩ ,

the final state of the –qubit system will be of the form ∣�⟩ ⊗ ∣0⟩. Similarly, if Alice chooses to
teleport ∣ ⟩ = ∣1⟩, the final state of all three qubits will be of the form ∣�⟩ ⊗ ∣1⟩. Finally, if Alice
chooses to teleport the superposition ∣ ⟩ = 1√

2
∣0⟩+ 1√

2
∣1⟩, the final state of the three qubits will

be of the form ∣�⟩ ⊗
(

1√
2
∣0⟩+ 1√

2
∣1⟩
)

.

Clearly, the  property necessary for verification will depend on the choice of ∣ ⟩; it will
stipulate that, when the teleportation protocol has completed, the final state of the -qubit system
will have one of the forms given above. In particular, if the input state is ∣0⟩ , the necessary
property is

P ⩾  [ true U ((telep_end) ∧ ((st = s1) ∨ ⋅ ⋅ ⋅ ∨ (st = sn))) ] (.)

where telep_end is a predicate which is true when the protocol completes, and the values
s1, ... , sn represent quantum states of the form ∣�⟩ ⊗ ∣0⟩. If the input state is ∣1⟩ , the necessary
property has exactly the same form as equation ., but the values s1, ... , sn represent quantum
states of the form ∣�⟩ ⊗ ∣1⟩; similarly for the case when the input state is the superposition

1√
2
∣0⟩+ 1√

2
∣1⟩.
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In other words, in order to formulate the property needed to verify the protocol, we need
to choose the input states and determine the possible final states of the three–qubit system in
advance. �is may be seen as begging the question; there is little point in verifying a protocol
whose final outcome has already been calculated by hand. We have developed an auxiliary tool
to , which computes the internal state numbers s1, ... , sn corresponding to the desired
final states. When the  property for a particular input is supplied to , the tool proves
that the teleportation model works as expected. Since the model–checker necessarily constructs
a finite state space for the model, the teleportation protocol can only be verified for a specific,
known set of inputs, rather than an arbitrary quantum state.

... Analysing the Quantum Bit–Flip Code Using PRISMGEN. Our third and final
example is the quantum bit–flip code for error correction []. In order to correct a single bit flip
error, which may occur during the transmission of a single qubit state, this code represents the
state by using a collection of three qubits. In particular, the qubit state ∣0⟩ is encoded as ∣000⟩

and the state ∣1⟩ is encoded as ∣111⟩. A bit flip error on the second qubit, for example, transforms
∣000⟩ into ∣010⟩.

In order to detect such an error, two additional qubits are used; they are known as ancillas. By
applying a sequence of operations and measurements to the ancillas, the so–called error syndrome

is obtained, which determines the location of the error. �en, the �1 operator is applied to the
erroneous qubit, thus restoring the initial quantum state of the –qubit system.

Our  model of the protocol for the quantum bit–flip code includes a channel which
perturbs the transmitted qubit with a chosen probability; this probability is a parameter of the
model, and can be varied as required. �e model uses the output from the –qubit version of the
 tool. When the syndrome computation is taken into account, there are in total five
qubits whose states need to be modelled; since we have not yet implemented a code generator for
–qubit quantum systems, the state transitions for the syndrome computation are calculated in
advance and manually coded into .
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To verify the correctness of the quantum bit–flip code, we need to ensure that: independently
of which of the three qubits is perturbed and with what probability this occurs, the protocol does
succeed in correcting the error. �us, at the end of the protocol, the state of the –qubit system
should be in one of the following forms (where ∣�⟩ is a two–qubit state):

∣0⟩ ⊗ ∣�⟩ , if the input state was ∣0⟩ (.)

∣1⟩ ⊗ ∣�⟩ , if the input state was ∣1⟩ (.)(
1√
2
∣0⟩+

1√
2
∣1⟩
)
⊗ ∣�⟩ , if the input state was 1√

2
(∣0⟩+ ∣1⟩) (.)

�e properties used in  to verify the protocol are analogous to those for teleportation,
taking the form

P ⩾  [ true U ((qbf_end) ∧ ((st = s1) ∨ ⋅ ⋅ ⋅ ∨ (st = sn))) ] (.)

where qbf_end is a predicate which holds when the protocol completes, and the values s1, ... , sn

represent quantum states of one of the forms given in Eqs. .—..  confirms that the
protocol does indeed leave the –qubit system in one of these forms, depending on the input, as
expected.

.. �e Limitations of the PRISMGEN Approach

�e  tool identifies which quantum operations arise in a given protocol (these are
chosen from a finite set which has been defined in advance), and applies the corresponding opera-
tor matrices to a quantum state vector of suitable dimension. �e quantum state vector is initially
in the basis state ∣0⟩⊗n, and the results of applying the operators of interest successively to this
state are recorded internally in . Each new state which arises is given a label, and this
label is represented by the value of an integer variable in the generated  model.

 was a first attempt at devising a model checking approach targeted at quantum
protocols, but suffered from the following shortcomings:
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∙ the generation of  code representing the quantum operations arising in a protocol
was quite inefficient, as quantum states were represented internally using the state vector
representation (whose size grows exponentially with the number of qubits in the system
being modelled). �e approach was only successful for systems of - qubits, and became
unwieldy for -qubit systems.
∙ the allowed quantum operations were limited to: CNot, Hadamard (H), and the Pauli

operators X ,Y ,Z . �ese operations were the most common ones arising in applications,
although confining ourselves to these operations seemed arbitrary and became quite lim-
iting.
∙ the semantics of protocol models were necessarily described by classical probabilistic tran-

sition systems, as all models were targeted at the  model checker. �is meant that
the two key features of quantum information, superposition and entanglement, could not
be described properly.
∙ the properties for verification were expressed in , and in most cases, these had to be

automatically generated also.
∙ the use of  was impractical, since verification of any protocol would be a three-

stage process. Firstly, the quantum protocol of interest would be described and manually
coded in . Secondly,  would be executed to generate state transition
code for all quantum operations arising in the protocol. �en, the generated file would
be combined with the manually coded protocol description and submitted to  for
verification along with a property expressed in .

.. Efficiently Simulable Quantum Protocols

Developing a self-contained verification tool would clearly solve the practical problems de-
scribed above, although certain issues, such as which states and operations to represent and how,
still needed further consideration. �ere exists a fundamental theoretical result, referred to as
the Gottesman–Knill theorem [, , ], which states that there is a specific, restricted set of
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quantum operations which can be simulated efficiently (and hence used in a verification tool) on
a classical computer. �is theorem may be stated as follows.

�eorem . (Gottesman–Knill). �ere is a restricted class of n–qubit quantum states in Hilbert space

Hn, such that each state ∣ ⟩ in this class satisfies the following:

∙ ∣ ⟩ can be obtained from ∣0⟩⊗n by CNot, Hadamard and phase operators only.

∙ ∣ ⟩ can be obtained from ∣0⟩⊗n by CNot, Hadamard and phase and measurement operators

only.

∙ ∣ ⟩ is stabilized by exactly 2n Pauli operators.

∙ ∣ ⟩ is uniquely determined by the stabilizer group S(∣ ⟩) = Stab(∣ ⟩) ∩Pn (i.e. the group

of Pauli operators that stabilize ∣ ⟩)

∙ �e total number of classical bits needed to specify ∣ ⟩ is n(2n+1), and these bits can be updated

in polynomial time after a CNot, Hadamard, phase or measurement operation is applied to ∣ ⟩.

Any quantum circuit consisting entirely of Clifford group gates (Hadamard, CNot and the phase

gate [, ]) and single–qubit measurements, is referred to as a stabilizer circuit, and any state
arising by applying a stabilizer circuit to ∣0⟩⊗n is a stabilizer state. Stabilizer circuits are important
in quantum error correction and fault-tolerant quantum computation. We have previously set out
the mathematics of the associated stabilizer formalism in Section ..

�e existence of a restricted class of quantum operations whose effect can be efficiently sim-
ulated classically is extremely important for our purposes, since this result makes it clear which
quantum protocols we can effectively analyse using current technology. However, this restricted
class of operations falls short of the full power of quantum computation, and there are certainly
protocols and attacks which cannot be expressed using only these. �ere are several related results
in this space, including the matrix product state formalism (see e.g. [] and the Valiant’s class
of efficiently simulable quantum circuits [].
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.. Concluding Remarks

We have considered in this chapter how an existing model checking tool might be adapted
to model small quantum protocols. �e  code generation tool has been discussed. We
considered the limitations of this approach and related it to the Gottesman–Knill theorem, which
states which quantum gates can be efficiently represented and simulated classically.

Now, the set of gates which  considers is certainly not universal. �is tool was
implemented before the author became aware of the Gottesman–Knill theorem and its ramifica-
tions; it is clear that the results obtained with this approach could have been slightly generalised to
take into account also the phase gate S , without losing the closure property for the set of quantum
states allowed in protocols.

It is also interesting to note that, due to the explicit enumeration of the quantum state space
which  performs, it is not possible to make use of ’s efficient symbolic model
checking algorithms. In effect,  serves to build an explicit representation of all the
quantum states which may arise in a protocol, while  itself computes the possible commu-
nications and interleavings for all these possible states.

Concerning protocol properties, we have clearly not used the probabilistic fragment of the
specification logic and have confined ourselves to “with probability ” formulae. However, there
may be a case to be made for analysing protocols involving many measurements, where formulae
involving explicit probabilities would be useful.

�e  approach only allowed the analysis of very simple quantum protocols, and
did not provide the best means of specifying properties for such; however, it formed the first
experimental foundation for building a dedicated model checking tool. As it was realised at a
later stage, the quantum gates allowed for by  are a subset of the Clifford group gates
and protocols which involve only these can be simulated in polynomial time using the algorithm
of Aaronson and Gottesman.

We will put simulation and verification matters aside in the next chapter with a view to pre-
senting a specification language for describing quantum protocols formally. We will see examples
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of its use and its formal syntax and semantics. Also we will consider a logic for describing key
properties of quantum protocols.



CHAPTER



SPECIFYING QUANTUM
PROTOCOLS AND THEIR

PROPERTIES

See the little phrases go,

Watch their funny antics.

�e men who make them wiggle so

Are teachers of semantics.

— F. Winsor (Space Child’s Mother Goose )


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I      a modelling language for quantum protocols with a for-
mal semantics and type system. We will also discuss quantum computation tree logic and
how this logic may be interpreted over models of protocols expressed in our language.

.. QMCLANG: A Modelling Language

Various programming and specification formalisms have been proposed in order to address the
shortcomings of the quantum circuit model when describing quantum protocols. �ese include
quantum programming languages and quantum process algebras (see [] for a survey). We
have built an imperative-style concurrent specification language,  , which is intended
to be used as an input language for the Quantum Model Checker () (see Chapter ). We
will proceed to discuss the nature of this specification language, stating its formal syntax and
semantics.

�e language is designed to allow for the description of systems with classical data and com-
munication as well as manipulation and transmission of a finite number of qubits. A 
model consists of: () a set of process declarations, and () a set of global (channel) variable dec-
larations.

Each process defines the behaviour of a system component and has its own local variables
(classical variables of integer, real or boolean type, and qubit variables) as well as access to all
global variables (which represent channels of communication between processes).

�e minimal  program consists of a single process with no actions:

program Minimal;

process SingleProcess; 

begin

end; 

endprogram.

Classical variables are declared and used just as in conventional computer languages such as
Pascal []; the language includes assignment statements and simple expressions (e.g. a:=b+2; is
a valid statement assuming a, b are suitably declared). Qubit variables store references to qubits
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in the global quantum state and are used in one of four ways (assuming a, q have been declared
as qubit variables):

∙ the statement q:=newqubit; allocates a new qubit in the global quantum state and sets
the value of q to represent the index of that qubit. Before such a statement is issued,
although a qubit variable q may have been declared it does not stand for an actual qubit
in the quantum state.
∙ the statement a:=savequbit q; stores the global quantum state at that point in exe-

cution. �e ability to create history variables such as a is a special feature of the language
which is useful for property verification.
∙ in statements which apply quantum operators (H , CNot, S , X , Y , Z ) to particular qubits,

the corresponding qubit variables are used, e.g.: had q; X q; cnot a q;.
∙ Measurements of qubits in the standard basis are performed using expressions of the

form meas q. Normally these expressions are assigned to an integer value, so that the
measurement outcome (0 or 1 for a single–qubit measurement) is recorded.

Apart from assignments and the statements of the forms discussed above, processes are able
to send and receive the values of variables on channels. �e sample program below demonstrates
this feature of the language. Note that the syntax for sending and receiving is reminiscent of the
formalism  [].

�is example also demonstrates two other characteristics of the language: parallelism and
executability. �e SendReceive system model declares one channel variable and two parallel
processes Sender and Receiver. All processes in a  program are supposed to be exe-
cuted in parallel, leading to several possible interleavings. However, the action ch?b cannot be
executed before the channel ch has received a value, so there is only possible execution of this
particular program. �ere is no explicit parallelism operator for processes (which is common in
other specification languages), as it is implicit.

Simple statements can be combined together to form blocks, which are executed in a single
step. A block is simply a sequence of statements enclosed in braces (‘{’ and ‘}’). �e semantics of
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program SendReceive;
var ch: channel of integer; 
process Sender;
var a: integer; 
begin
a := 2; 
ch!a;

end; 
process Receiver;
var b: integer; 
begin
ch?b; 

end;
endprogram. 

F .. An example with sending and receiving of variables.

the language is such that one step in the execution of a process consists of either a single statement
by itself or a block.

 models can also include non–deterministic choices and loops. In particular, a pro-
cess can perform a choice between several sequences of statements, and such a choice can be
performed repeatedly. Here is an example of a process involving a loop (this loop is repeated up
to a maximum number of times, which is implementation-dependent):
process Looping;
var a: integer; q: qubit; 
begin
q := newqubit; 
do
□a:=0; had q; 
□a:=1; X q;
od 

end;

F .. An example with looping.

�e Looping process repeatedly chooses, either to set a to 0 and then apply the H gate to q,
or to set a to 1 and then apply the X gate to q. �e first statement in an option (an option is a
sequence of statements preceded by the symbol ‘□’ – in ASCII form this is represented by ‘::’)
can be an expression stating a condition; this condition is used to determine whether the option
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is executable or not. �ese conventions are habitual in guarded–command languages and are
inspired by a proposal of Dijkstra [].

Next we define the formal syntax of  along with its operational semantics.

.. Syntax

�e concrete syntax of  is given in Fig. .. �e actual parser for the language uses a
slight variation of the grammar shown, which also takes into account the precedence of arithmetic
operators. �e grammar defines the four base types for variables and the channel type (T ), expres-
sions (E ), statements (S), sequences of statements (Q), nondeterministic choices (H), guarded
commands (G ), commands (C ), variable declarations (V andD), processes (P) and programs (M).

T ::= integer ∣ bool ∣ real ∣ qubit
∣ channel of T

E ::= n ∣ r ∣ x ∣ E1 + E2 ∣ E1 − E2 ∣ E1 ∗ E2 ∣ E1/E2

∣ true ∣ false ∣ not E ∣ E1 and E2 ∣ E1 or E2

∣ E1 = E2 ∣ E1 < E2 ∣ E1 > E2 ∣ meas x ∣ newqubit
S ::= E ∣ x := E ∣ x1!x2 ∣ x1?x2 ∣ cnot x1x2 ∣ had x
∣ ph x ∣ X x ∣ Y x ∣ Z x

Q ::= S ; Q ∣ S
H ::= □Q H ∣ □Q
G ::= if H fi ∣ do H od
C ::= S C ∣ G C ∣ �
V ::= var D ∣ �
D ::= x : T ; D ∣ �
P ::= process p V begin C end P ∣ �
M ::= program p V begin P end

F .. Concrete Syntax for .

Note that  does not include a universal set of quantum operators; thus, by design,
it is not a universal quantum programming language. (Adding the �/8 gate would allow for
approximate universality and this only requires adding an extra semantic rule for this case.)
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.. Semantics

�e semantics are defined over the internal syntax of the language, given in Fig. .. �e
mapping from concrete to internal syntax should be intuitively clear (note that declarations of
variables have been omitted and that certain additional notations for operators have been intro-
duced). �e metavariables used in the different productions belong to the following syntactic
categories: n ∈ Num, r ∈ Real, x ∈ Var, c ∈ Chan.

op ::= + ∣ − ∣ ∗ ∣ / op ∈ Op

bop ::= ∧ ∣ ∨ bop ∈ BOp

qop ::= had ∣ ph ∣ X ∣ Y ∣ Z qop ∈ QOp

rel ::= > ∣ < ∣ = rel ∈ Rel

E ::= n ∣ r ∣ x ∣ E1 op E2 ∣ E1 bop E2 ∣ E1 rel E2

∣ true ∣ false ∣ ¬ E E ∈ Exp

S ::= E ∣ x := E ∣ x := measure x1, ... , xk ∣ x := newqubit
∣ c!x ∣ c?x ∣ cnot x1 x2 ∣ qop x S ∈ Stmt

Q ::= S ∣ S ; Q ∣ � Q ∈ Seq

H ::= Q ∣ Q□H ∣ � H ∈ Choice

G ::= H ∣ do(H) ∣ � G ∈ GCom

C ::= S ; C ∣ G ; C ∣ � C ∈ Com

P ::= C ∣∣ P ∣ � P ∈ Program

F .. Internal Syntax for .

Definition . (Values). �e set of possible values which arise in the language is

ValueSet = ℝ ∪ B ∪ {null} ∪ℚ

where ℚ = {qb1, qb2, ...}, B = {true, false}, and the values qb1, qb2, ... represent each of the qubits.

�e special value null is used as the content of an empty channel variable.
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−→E : Exp× Store×H ↪→ ValueSet×H

−→S : Stmt× ChanStore× Store×H ↪→ ChanStore× Store×H

−→Q : Seq× ChanStore× Store×H ↪→ Seq× ChanStore× Store×H

−→H : Choice× ChanStore× Store×H ↪→ Choice× ChanStore× Store×H

−→G : GCom× ChanStore× Store×H × ℕ ↪→ Com× ChanStore× Store×H × ℕ
−→C : Com× ChanStore× Store×H × ℕ ↪→ Com× ChanStore× Store×H × ℕ
−→P : Program× ChanStore× StoreSet×H ↪→ Program× ChanStore× StoreSet×H

F .. Transition Relations for the Operational Semantics.

Definition . (Store). A store is a partial mapping from variables to values (similarly a channel

store):

Store = {f : Var ∪ QVar ↪→ ValueSet}

ChanStore = {f : Chan ↪→ ValueSet}

A process store represents the local state of an individual process; we denote by StoreSet a set
of stores:

StoreSet = Store× Store× ⋅ ⋅ ⋅

We can now define the transition relations which give the operational semantics of the lan-
guage. �e types of these relations are given in Fig. .. In rules we will use � ∈ Store, Σ ∈

StoreSet,� ∈ ChanStore.

Definition . (State). �e overall state at any time during a computation is given by an element of

the set

State = H × StoreSet× ChanStore
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Definition . (Substitution). Substitution of variables is as follows:

�[x 7→ v ](y) =

⎧⎨⎩
v if y = x

�(y) otherwise

We will require some auxiliary functions in the definitions of the semantics of expressions. In
particular, we will require:

fA : Op× ℝ× ℝ 7→ ℝ

fB : BOp× B× B 7→ B

fR : Rel× ℝ× ℝ 7→ B

which are defined as follows:

fA(op, a1, a2) =

⎧⎨⎩

a1 + a2 if op = +

a1 − a2 if op = −

a1 ⋅ a2 if op = ∗

a1 ÷ a2 if op = /

fB(bop, b1, b2) =

⎧⎨⎩
b1 ∧ b2 if bop = ∧

b1 ∨ b2 if bop = ∨

fR(rel , a1, a2) =

⎧⎨⎩
true if a1 > a2, false otherwise when rel is >

true if a1 < a2, false otherwise when rel is <

true if a1 = a2, false otherwise when rel is =

Let Tℛ : Stmt× State→ Choice denote a syntactic translation function with

Tℛ(x := measure x1, ... , xk , s) = (x := �1 □ x := �2 □ ⋅ ⋅ ⋅ □ x := �m) (.)
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so that the non–deterministic choice construct produced by this function reflects all possible out-
comes {�i ∣ 0 ⩽ �i ⩽ 2k−1} of the measurement, from the current state s ∈ State, of the
qubits represented by variables x1, ... , xk (see also Section .). �e probabilities of the different
outcomes are not taken into account, since for stabilizer states the measurement outcomes  and
 are equiprobable.

... Expressions. �e semantics of expressions is quite straightforward. Base values in-
clude integers (n), real numbers (r ), and the boolean values true and false. Qubit values are not
explicitly represented in the language, so that it is not possible to assign an explicit value to a
qubit variable. Variables of all types are stored in the process stores, and transition relations such
as −→E take into account the store � of the process currently being executed. Transition relation
−→E is defined inductively over all expressions below.
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(n,�, ∣ ⟩) −→E (n, ∣ ⟩)
(-)

(r ,�, ∣ ⟩) −→E (r , ∣ ⟩)
(-)

(x ,�, ∣ ⟩) −→E (�(x), ∣ ⟩)
(-)

(true,�, ∣ ⟩) −→E (true, ∣ ⟩)
(-)

(false,�, ∣ ⟩) −→E (false, ∣ ⟩)
(-)

(E ,�, ∣ ⟩) −→E (true, ∣ ⟩)
(¬E ,�, ∣ ⟩) −→E (false, ∣ ⟩)

(-1)

(E ,�, ∣ ⟩) −→E (false, ∣ ⟩)
(¬E ,�, ∣ ⟩) −→E (true, ∣ ⟩)

(-2)

(E1,�, ∣ ⟩) −→E (v1, ∣ ⟩), (E2,�, ∣ ⟩) −→E (v2, ∣ ⟩)
(E1 op E2,�, ∣ ⟩) −→E (fA(op, v1, v2), ∣ ⟩)

(-)

(E1,�, ∣ ⟩) −→E (v1, ∣ ⟩), (E2,�, ∣ ⟩) −→E (v2, ∣ ⟩)
(E1 bop E2,�, ∣ ⟩) −→E (fB(bop, v1, v2), ∣ ⟩)

(-)

(E1,�, ∣ ⟩) −→E (v1, ∣ ⟩), (E2,�, ∣ ⟩) −→E (v2, ∣ ⟩)
(E1 rel E2,�, ∣ ⟩) −→E (fR(rel , v1, v2), ∣ ⟩)

(-)

... Statements. �e semantics of statements is given by transition relation −→S . An
isolated expression is treated as a statement; such a statement can control the flow of execution
as it may or may not be executable from the current state, as we shall see, but it has no effect
on the state, as shown in rule -. An assignment statement is defined as having the effect
of substituting the value of a variable in the process store. Allocating a new qubit enlarges the
overall quantum state and introduces a new internal reference L, which indexes it. Sending (c!x)
and receiving (c?x) are similar to assignment, but they are specific to channel variables; an empty
channel has the special value null. Applying the unitary operators (cnot, H , ph, X , Y , Z) involves
multiplying the global quantum state by a suitably–dimensioned unitary matrix, and measurement
is treated as a source of non–deterministic choice, where the outcome is stored. Note that Pv1,...,vk
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denotes the projection operator corresponding to the computational basis measurement of the k
qubits.

(E ,�,�, ∣ ⟩) −→S (�,�, ∣ ⟩) (-)
(E ,�, ∣ ⟩) −→E (v , ∣ ⟩)

(x := E ,�,�, ∣ ⟩) −→S (�,�[x 7→ v ], ∣ ⟩)
(-)

L ∈ ℚ is fresh
(x := newqubit,�,�, ∣ ⟩) −→S (�,�[x 7→ L], (∣ ⟩ ⊗ ∣0⟩))

(-)

(x ,�, ∣ ⟩) −→E (v , ∣ ⟩)
(c!x ,�,�, ∣ ⟩) −→S (�[c 7→ v ],�[x 7→ null], ∣ ⟩)

(-)

�(x) = v

(c?x ,�,�, ∣ ⟩) −→S (�[c 7→ null],�[x 7→ v ])
(-)

(cnot x1 x2,�,�, ∣ ⟩) −→S (�,�,C�(x1),�(x2)∣ ⟩) (-)

(qop x ,�,�, ∣ ⟩) −→S (�,�,Uqop∣ ⟩) (-)
(Tℛ(x := measure x1, ... , xk , s),�,�, ∣ ⟩) −→H (�,�′,�′, ∣ ⟩), �(xi ) = vi for 1 ⩽ i ⩽ k

(x := measure x1, ... , xk ,�,�, ∣ ⟩) −→S (�′,�′,Pv1,...,vk
∣ ⟩)

(-)

... Sequences and Non-deterministic Choices. Transition relation −→Q expresses the
effect of sequencing of statements; it should require no further explanation.

(S ,�,�, ∣ ⟩) −→S (�′,�′, ∣ ′⟩)
(S ,�,�, ∣ ⟩) −→Q (�,�′,�′, ∣ ′⟩)

(-1)

(S ,�,�, ∣ ⟩) −→S (�′,�′, ∣ ′⟩)
(S ; Q,�,�, ∣ ⟩) −→Q (Q,�′,�′, ∣ ′⟩)

(-2)

Non–deterministic choices contain several sequences of statements, one of which may be
selected for execution. Once the choice has been made, the chosen sequence must be executed to
completion. One step of the transition relation −→H is designed to correspond to the execution
of a choice (and the first step thereof ).
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(Q,�,�, ∣ ⟩) −→Q (Q ′,�′,�′, ∣ ′⟩)
(Q,�,�, ∣ ⟩) −→H (Q ′,�′,�′, ∣ ′⟩)

(-1)

(Q,�,�, ∣ ⟩) −→Q (Q ′,�′,�′, ∣ ′⟩)
(Q□H ,�,�, ∣ ⟩) −→H (Q ′,�′,�′, ∣ ′⟩)

(-2)

(Q□H ,�,�, ∣ ⟩) −→H (H ,�,�, ∣ ⟩)
(-3)

(Q,�,�, ∣ ⟩) −→Q (�,�′,�′, ∣ ′⟩)
(Q,�,�, ∣ ⟩) −→H (�,�′,�′, ∣ ′⟩)

(-4)

... Guarded Commands. A guarded command is either an explicit non–deterministic
choice (the case if …fi) or a loop (enclosed in do …od). �e rules for guarded commands reduce
the former into an instance of the relation −→H , and provide the steps for executing a loop.
Note that a loop is simply a repetition of a non–deterministic choice, and that executing a loop
means transforming it into a command sequence consisting of the non–deterministic choice by
itself, followed by another iteration of the whole loop (see rule -2).

�ere is an upper bound iMAX on the number of repetitions of a loop, which is implementation
dependent. Future extensions to the language might include an explicit mechanism for termi-
nating such loops early; there are constructs for this purpose e.g. in the language PROMELA
(the syntax and functionality of guarded commands used here is inspired by that language and its
implementation in the SPIN model checker).

Note that we use a transition relation −→N to reduce a choice H to another choice H ♯ before
performing a step. �is is defined and explained in Section ..



.. SEMANTICS 

(H ,�,�, ∣ ⟩) −→N (H ♯,�,�, ∣ ⟩), (H ♯,�,�, ∣ ⟩) −→H (H ′,�′,�′, ∣ ′⟩)
(H ,�,�, ∣ ⟩, i) −→G (H ′,�′,�′, ∣ ′⟩, i)

(-1)

(H ,�,�, ∣ ⟩) −→N (H ♯,�,�, ∣ ⟩), (H ♯,�,�, ∣ ⟩) −→H (H ′,�′,�′, ∣ ′⟩)
(do(H),�,�, ∣ ⟩, i) −→G (H ′; do(H),�′,�′, ∣ ′⟩, i)

(-2)

i < iMAX , (H ,�,�, ∣ ⟩) −→N (H ♯,�,�, ∣ ⟩), (H ♯,�,�, ∣ ⟩) −→H (�,�′,�′, ∣ ′⟩)
(do(H),�,�, ∣ ⟩, i) −→G (�,�′,�′, ∣ ′⟩, i + 1)

(-3)
i = iMAX

(do(H),�,�, ∣ ⟩, i) −→G (�,�,�, ∣ ⟩, 0)
(-4)

... Processes. A process C is simply a sequence of commands, including guarded com-
mands and single statements. (Note that we ignore variable declarations and process names here
for simplicity.) Executing a step of a process means executing the next statement available. �e
transition relation −→C expresses the meaning of a process step and is detailed below.

ExeS(S ,�,�, ∣ ⟩) = true, (S ,�,�, ∣ ⟩) −→S (�′,�′, ∣ ′⟩)
(S ; C ,�,�, ∣ ⟩, i) −→C (C ,�′,�′, ∣ ′⟩, i)

(-1)

(G ,�,�, ∣ ⟩, i) −→G (G ′,�′,�′, ∣ ′⟩, i ′)
(G ; C ,�,�, ∣ ⟩, i) −→C (G ′; C ,�′,�′, ∣ ′⟩, i ′)

(-2)

(G ,�,�, ∣ ⟩, i) −→G (�,�′,�′, ∣ ′⟩, i ′)
(G ; C ,�,�, ∣ ⟩, i) −→C (C ,�′,�′, ∣ ′⟩, i ′)

(-3)

where n is initialised to 0 in the first application of -2.

... Programs. A single step of a program corresponds to a single process transition. At
each time instant, there are many possible process choices, i.e. many possible process transitions.
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Transition relation −→P expresses the execution of a single program step.

(C ,�,�, ∣ ⟩, i) −→C (C ′,�′,�′, ∣ ′⟩, i ′)
(C ∣∣ P ,�, Σ, ∣ ⟩) −→P (C ′ ∣∣ P ,�′, Σ′, ∣ ′⟩, i ′)

(-1)

(C ′,�,�, ∣ ⟩, i) −→C (C ′′,�′,�′, ∣ ′⟩, i ′)
(C ∣∣ P ,�, Σ, ∣ ⟩) −→P (C ∣∣ P ′,�′, Σ′, ∣ ′⟩, i ′)

(-2)

where � ∈ Σ, �′ ∈ Σ′, P = ⋅ ⋅ ⋅ ∣∣ C ′ ∣∣ ⋅ ⋅ ⋅ and P ′ = ⋅ ⋅ ⋅ ∣∣ C ′′ ∣∣ ⋅ ⋅ ⋅ .

Definition . (Complete Program Run). Starting from an empty initial state (�0, Σ0, 1) (where

�0 = Σ0 = ∅ and 1 is a unit vector of H ) and a program P , we define a complete program run as a

sequence of transitions

(P ,�0, Σ0, 0) −→∗P (�,�, Σ, ∣ ⟩)

It should be noted that a run of a  program may terminate prematurely if all re-
maining statements are non–executable (this means that a run of a program may end in a state
where the original program P has not been reduced completely to the empty string � as above).
�e concept of executability is detailed in the following section.

.. �e Executability Predicate

At each step during execution of a  program, there are several possibilities caused
by the interleaving of processes. As we have seen, a single execution step comprises a single
statement. However, execution can only occur if the statement in question (and, by extension,
the process containing it) is executable. Executability is defined formally using a predicate ExeS

for statements. Similar predicates can be defined for the other constructs in the language; the
definitions are given in Fig. .. Note that we have used the executability predicates here in the
semantic rules.

Communication actions (sending and receiving of variables) can be used to control the syn-
chronisation of processes, since these are performed with statements that are only executable if a
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condition is satisfied (e.g. a “receive” statement cannot be executed if the channel from which a
value is being retrieved is empty). �is fact is expressed in Eqs. . and ..

Note that in  there exist expression–statements, namely, statements consisting of a
single expression which is simply evaluated. �is feature, inspired by the language PROMELA,
may not seem useful at first, but turns out to be a very helpful mechanism for controlling the
interleaving of processes. A boolean expression–statement which is false is simply not executable.
In practice this means that one can introduce an arbitrary condition inside a process which blocks
that process until the condition is satisfied. One must be careful not to misconstrue expression–
statements with expressions that are inside an assignment statement; an assignment is always
executable.

Notation . (Definitions). We use the symbol := instead of the equality symbol = to denote a definition,

namely that the expression on the left hand side of this symbol can be replaced by the expression on the

right hand side.

Executability is the mechanism by which conditions in programs are checked, since condi-
tions are simply written as expression–statements which are placed at suitable points in the text
of a process. A guarded command comprises a non–deterministic choice between a number of
options; each option consists of a sequence of statements which may or may not be executable at
a given point during execution. We define the set of enabled options inside a choice H as follows.

Enabled(H) = {Q ∣ Q is an option in H such that ExeQ(Q)} (.)

Definition . (Enabled Options). If Enabled(H) = {Q1, ... ,Qk} then we define H ♯ to be the

corresponding syntactic element:

H ♯ := Q1□ ⋅ ⋅ ⋅□Qk

�is symbol is used to represent the piece of program text consisting only of the enabled options in H .

In order to execute a step inside a non–deterministic choice, the enabledness of the options
inside the choice must be checked; this is performed via a simple transition relation −→N which
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reduces a choice H to a choice H ♯ between enabled options.

−→N : Choice× ChanStore× Store×H ↪→ Choice× ChanStore× Store×H

(H ,�,�, ∣ ⟩) −→N (H ♯,�,�, ∣ ⟩)
(-)

Next we turn to the type system of the language.

.. Type System

�e type system for  is given by the rules detailed next.  is a statically typed

language. �e presentation of the type system is in the style of []. We assume that the reader
is familiar with the concepts of typing judgement and type environment.

In the type system there are two main kinds of judgement, one for expressions and types, and
one for statements. We write

Γ ⊢ ⋄ (.)

to express the fact that Γ is a well–formed environment. A judgement of the form

Γ ⊢ E : T (.)

states that the expression E is of type T in environment Γ. Finally, a judgement of the form

Γ ⊢ S (.)

states that the statement S is well–typed in environment Γ.
�e base rules for the type system define how environments are constructed. �e form Γ, x : T

denotes an environment which is extended with the declaration of the variable x of type T .

∅ ⊢ ⋄ Γ ⊢ T x ∕∈ dom(Γ)

Γ, x : T ⊢ ⋄
Γ1, x : T , Γ2 ⊢ ⋄

Γ1, x : T , Γ2 ⊢ x : T
(-,-,-)
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Given a well–formed environment Γ the admissible types are integers, booleans, real numbers,
qubits, and channels containing values of these types.

Γ ⊢ ⋄
Γ ⊢ integer

Γ ⊢ ⋄
Γ ⊢ bool

Γ ⊢ ⋄
Γ ⊢ real (-,-,-)

Γ ⊢ ⋄
Γ ⊢ qubit

Γ ⊢ ⋄ Γ ⊢ T

Γ ⊢ channel of T
(-,-)

�e following rules give the types of simple expressions.

Γ ⊢ ⋄
Γ ⊢ n : integer

Γ ⊢ ⋄
Γ ⊢ r : real (-1,-2)

Γ ⊢ ⋄
Γ ⊢ true : bool

Γ ⊢ ⋄
Γ ⊢ false : bool

Γ ⊢ E : bool
Γ ⊢ ¬E : bool (-3,-4,-5)

Rules -6 to -8 give the types of composite expressions.

Γ ⊢ E1 : integer Γ ⊢ E2 : integer
Γ ⊢ E1 op E2 : integer (-6)

Γ ⊢ E1 : bool Γ ⊢ E2 : bool
Γ ⊢ E1 bop E2 : bool (-7)

Γ ⊢ E1 : integer Γ ⊢ E2 : integer
Γ ⊢ E1 rel E2 : bool (-8)

Well–typed statements are defined by rules -1 to -7.

Γ ⊢ x : qubit
Γ ⊢ x := newqubit

Γ ⊢ x : qubit
Γ ⊢ Op x

(-1,-2)
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Γ ⊢ x1 : qubit Γ ⊢ x2 : qubit
Γ ⊢ cnot x1 x2

(-3)
Γ ⊢ x : integer Γ ⊢ xi : qubit for all i

Γ ⊢ x := measure x1, ... , xk
(-4)

Γ ⊢ E : T

Γ ⊢ x := E
(-5)

Γ ⊢ T Γ ⊢ c : channel of T Γ ⊢ x : T

Γ ⊢ c!x
(-6)

Γ ⊢ T Γ ⊢ c : channel of T Γ ⊢ x : T

Γ ⊢ c?x
(-7)

�e rules of the type system restrict the set of valid  programs as defined by the
grammar in Fig. .. �e types of all variables in a  program must be explicitly declared,
although we have omitted type declarations from the abstract syntax for simplicity. �e semantics
of type declarations are subsumed by the static typing rules -, -, and - given
in this section.
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ExeS : Stmt× State→ {true, false}
ExeS(E ,�,�, ∣ ⟩) := eval(E ,�,�, ∣ ⟩)

ExeS(x := E ,�,�, ∣ ⟩) := true

ExeS(x := newqubit,�,�, ∣ ⟩) := true

ExeS(x := measure x1, ... , xk ,�,�, ∣ ⟩) := ∀i ∈ {1, ... , k}.�(xi ) ∕= null

ExeS(c!x ,�,�, ∣ ⟩) := �(c) = null

ExeS(c?x ,�,�, ∣ ⟩) := �(c) ∕= null

ExeS(cnot x1 x2,�,�, ∣ ⟩) := �(x1) ∕= null and �(x2) ∕= null

ExeS(qop x ,�,�, ∣ ⟩) := �(x) ∕= null

ExeQ : Seq× State→ {true, false}
ExeQ(S ,�,�, ∣ ⟩) := ExeS(S ,�,�, ∣ ⟩)

ExeQ(S ; Q,�,�, ∣ ⟩) := ExeS�,�, ∣ ⟩(S ,�,�, ∣ ⟩)

ExeH : Choice× State→ {true, false}
ExeH(Q,�,�, ∣ ⟩) := ExeQ(Q,�,�, ∣ ⟩)

ExeH(Q □ H ,�,�, ∣ ⟩) :=

{
ExeQ(Q,�,�, ∣ ⟩)
or ∃Q ′ ∈ H .ExeQ(Q ′,�,�, ∣ ⟩)

ExeG : GCom× State→ {true, false}
ExeG(H ,�,�, ∣ ⟩) := ExeH(H ,�,�, ∣ ⟩)

ExeG(do(H),�,�, ∣ ⟩) := ExeH(H ,�,�, ∣ ⟩)

ExeC : Com× State→ {true, false}
ExeC(S ; C ,�,�, ∣ ⟩) := ExeS(S ,�,�, ∣ ⟩)
ExeC(G ; C ,�,�, ∣ ⟩) := ExeG(G ,�,�, ∣ ⟩)

F .. Executability Predicates.
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eval(n,�,�, ∣ ⟩) := true

eval(r ,�,�, ∣ ⟩) := true

eval(x ,�,�, ∣ ⟩) :=

{
true if �(x) > 0 or �(x) = true

false otherwise
eval(E1 op E2,�,�, ∣ ⟩) := true

eval(E1 bop E2,�,�, ∣ ⟩) := fB(eval(E1,�,�, ∣ ⟩), eval(E2,�,�, ∣ ⟩))

eval(E1 rel E2,�,�, ∣ ⟩) := fR(eval(E1,�,�, ∣ ⟩), eval(E2,�,�, ∣ ⟩))

eval(true,�,�, ∣ ⟩) := true

eval(false,�,�, ∣ ⟩) := false

eval(¬E ,�,�, ∣ ⟩) :=

{
true if eval(E ,�,�, ∣ ⟩) = false

false if eval(E ,�,�, ∣ ⟩) = true

F .. Definition of an evaluation function for expressions. �is is used for
defining executability of expression–statements.
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.. �e EQPL and QCTL Specification Logics

�e properties of quantum protocols which we are interested in reasoning about are specific to
quantum states (e.g. which qubits are ‘active’ in a given state, which qubits are entangled). We are
also interested in outcomes of different measurements, and the way in which the values of classical
variables evolve. For this purpose we have chosen to use Exogenous Quantum Propositional Logic
() and its temporal extension, Quantum Computation Tree Logic ().  is a subset
of  [], although the former has different variants, appearing in [–].

We will present here the syntax and semantics of  as defined in [], giving a satisfaction
relation for the logic while relating it to the semantics of our modelling language. �e syntax and
semantics of  is detailed in Section ...

With the modelling language and specification logic formally defined, we will have an el-
egant framework with which to produce uniform descriptions of quantum protocols and their
properties.

... EQPL: Exogenous Quantum Propositional Logic.  was designed so as to en-
able reasoning about systems comprising a finite set of qubits as well as a classical state. �e
main novelty of this logic is that it uses combinations of classical valuations (which provide the se-
mantics of classical propositional logic) to give semantics to ‘quantum formulae’. In other words,
propositional logic is extended to produce quantum propositional logic by taking combinations of
models of the former to build models of the latter; the authors call this the exogenous approach to

enriching logics. In [], classical propositional logic is first generalised to incorporate probability,
leading to the logic EPPL, and is then further generalised (by defining mathematical structures
embodying the postulates of quantum mechanics) to , which we now describe.

�e formulae of  [] allow one to reason about the state of individual qubits, and involve
usual logical connectives such as negation and implication. �ere are two levels of formulae:
classical formulae, which hold only if all valuations in a state satisfy them, and quantum formulae,

which are essentially logical combinations of classical formulae. �e syntax of  is given in
Fig. ..
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� := pk ∣ ⊥ ∣ (�⇒ �)

t := x ∣ r ∣ (∫ �) ∣ (t + t) ∣ (t t) ∣ Re(u) ∣ Im(u) ∣ arg(u) ∣ ∣u∣
u := z ∣ ∣⊤⟩FA ∣ (t + it) ∣ te it ∣ u ∣ (u + u) ∣ (u u) ∣ (� ⊳ u; u)


 := � ∣ (t ⩽ t) ∣ [F ] ∣ (
 ⊐ 
)

F .. �e syntax of  (from []).

�e starting point for defining the semantics of  is the establishment of a denumerable
set of propositional constants qB = {pk : k ∈ ℕ}, where we associate each pk to a single qubit
in the protocol under consideration. A classical valuation v is a truth value assignment for all
propositional constants, i.e. a mapping

v : qB→ {0, 1}

Given a set of classical valuations V , it is possible to construct a Hilbert space H = H(V ) of
which the v ∈ V constitute an orthonormal basis. In the definition of , a set of admissible

valuations V is established, and then the Hilbert space H (V ) is constructed by making each
vector v ∈ V into a basis vector of H (V ); in other words, H (V ) is spanned by the vectors
in V . For all intents and purposes we take V to consist of all 2n valuations for the n propositional
symbols; each of these valuations corresponds to a computational basis vector of the Hilbert space
associated with an n–qubit system. A quantum valuation is a unit vector of H . A quantum state
∣ ⟩ is none other than a quantum valuation, and so can be expressed as a linear combination of
classical valuations (which are computational basis states). An n–qubit state ∣ ⟩ is specified by 2n

complex numbers { ⟨v ∣ ⟩ ∣ v ⊂ 2qB }. �e complex number ⟨v ∣ ⟩ (termed a ‘logical amplitude’)
is the projection of the unit vector  on the basis vectors ∣v⟩.

Example .. For a two–qubit system we have four possible valuations for the two propositional con-

stants p0 and p1. �ese valuations correspond exactly to the four computational basis vectors ∣00⟩, ∣01⟩,

∣10⟩, ∣11⟩. We have the set V = {v00, v01, v10, v11} where:
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v00 : p0 7→ 0,p1 7→ 0 (.)

v01 : p0 7→ 0,p1 7→ 1 (.)

v10 : p0 7→ 1,p1 7→ 0 (.)

v11 : p0 7→ 1,p1 7→ 1 (.)

�e semantics of  is given over a quantum interpretation structure; this structure is defined
as follows (the reader can refer to [] for the details of the particular notations used).

Definition .. A quantum interpretation structure is a tuple

w = (V , S , ∣ ⟩, �)

where:

∙ V is a nonempty subset of 2qB (for our purposes we take V = 2qB)

∙ S is a finite partition of qB (this is actually an entanglement partition, containing those qubits

which are not entangled with the rest of the state)

∙ ∣ ⟩ = {∣ ⟩[R]}R∈
∪

S where each ∣ ⟩[R] is a unit vector of H[R] and such that:

() ∣ ⟩[∅] = exp(i0)

() ∣ ⟩[R] =
⊗

S∈S ,S⊆R ∣ ⟩[S] for each nonempty R ∈
∪
S

() ∣ ⟩[S] is non–factorisable for each S ∈ S

() ⟨v ∣ ⟩[qB] = 0 if v ∕∈ V

∙ � : {�FA}F⊆finqB,A⊆F where each �FA ∈ ℂ and �FA = ⟨vF
A ∣ ⟩[F ] if F ∈

∪
S .

Note that a quantum interpretation structure consists of a quantum state as well as additional
information about its structure, including the entanglement partition S and the coefficients �. In
addition to this, a probability space is defined and is used to assign meaning to terms in the logic
representing measurement of a set F of qubits; it suffices to say here that this space comprises a
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probability measure �F
w, as this symbol is used in the definition of the satisfaction relation for the

logic.
Given a set S of qubit symbols and a setV of valuations, the extent atV of a classical formula�

over S is defined as ∣�∣SV = {v ∈ V[S] : v ⊩ �}. �e satisfaction relation for the logic also makes
use of the concept of an assignment �, which is simply a store defined for all variables of interest
(where x denotes a real variable and z a complex variable), so that �(x) ∈ ℝ, �(z) ∈ ℂ.

A classical formula � evaluates to true if and only if � is true for every valuation corresponding
to a basis vector that appears in the quantum state with a non-zero coefficient. For example, if the
quantum state is 1√

2
(∣00⟩+ ∣11⟩) then q0 ⇔ q1 is true but q0 ∧ q1 is false. Note that commonly

encountered connectives such as⇔ and ∧ can be defined (at both the classical and quantum level)
in terms of falsum (⊥) and implication (⇒ and ⊐ respectively).

A quantum formula 
 is either the constant ⊥, a comparison formula t1 ⩽ t2, a formula
involving a quantum connective such as 
1 ⊐ 
2, a classical formula �, or an entanglement for-
mula [qi, qj, ...]. �e formula t1 ⩽ t2 is evaluated by evaluating t1 and t2 to real values. Quantum
connectives are defined by the usual truth tables for boolean operators applied to the values of the
operands.

Denotation of terms:
[[x ]]w,� = �(x)
[[r ]]w,� = r
[[
(∫

�
)
]]w,� = �w(∣�∣V )

[[z ]]w,� = �(z)
[[∣⊤⟩G ,A]]w,� = �G ,A

[[(� ⊳ u; u)]]w,� =

{
[[u1]]w,� if ∣�∣V = V

[[u2]]w,� otherwise
[[t1 + it2]]w,� = [[t1]]w,� + �[[t2]]w,�

Satisfaction of quantum formulae:
w, � ⊩ � iff v ⊩ � for every v ∈ V
w, � ⊩ (t1 ⩽ t2) iff [[t1]]w,� ⩽ [[t2]]w,�

w, � ⊩ [F ] iff F ∈
∪

S
w, � ⊩ (
1 ⊃ 
2) iff w, � ∕⊩ 
1 or w, � ⊩ 
2

F .. �e semantics of .
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... QCTL: Quantum Computation Tree Logic. We have implemented quantum com-
putation tree logic ( []) in the  model checker;  adds the usual temporal connec-
tives (AF, EF, EU) of computation tree logic () [] to .

�e syntax of temporal formulae is given below.

� ::= 
 ∣ � ⊐ � ∣ (EX�) ∣ ([� EU �]) ∣ (AF�) (.)

�e temporal operators EX, EU, AF allow us to build formulae which express, with reference
to the tree of all possible program executions, in which paths and in which states a quantum
formula should hold:

∙ EX � expresses the notion “there exists a path (i.e. a run of the program) in which, if �
holds in a state of this path, it also holds in the immediately following state (the next
state).”
∙ [�1 EU �2] expresses the fact that “there exists a path (i.e. a run of the program) in which
�1 holds for a sequence of states, and immediately after �2 holds until the end of the run.”
∙ AF � expresses the fact that “for all runs of the program, there is a future state in which
� is satisfied.”

Other common  operators, such as EF, can be expressed as combinations of the above opera-
tors (see []).

T ,w, � ⊩QCTL 
 iff w, � ⊩ 

T ,w, � ⊩QCTL (�1 ⊃ �2) iff T ,w, � ∕⊩QCTL �1 or T ,w, � ⊩QCTL �2

T ,w, � ⊩QCTL EX� iff T ,w′, �′ ⊩QCTL � for some (w, �) ∈ S such
that ((w, �), (w′, �′)) ∈ R
T ,w, � ⊩QCTL AF� iff for all paths (w1, �1), (w2, �2), ... with w1 = w, �1 = � there is a
i ⩾ 1 such that T ,wi , �i ⊩QCTL �
T ,w, � ⊩QCTL E[�1U�2] iff there is a path (w1, �1), (w2, �2), ... with w1 = w, �1 = �
such that for some i ⩾ 1, T ,w, � ⊩QCTL �2 and T ,wj , �j ⊩QCTL �1 for 1 ⩽ j < i .

F .. �e semantics of .

�e semantics of  are defined over a quantum Kripke structure, defined thus:
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Definition .. A finite quantum Kripke structure over the set of qubits qB and variables X is a

pair T = (S ,R) where:

∙ S ⊂ HqB × ℝX is a set of pairs ( , �) such that  is a unit vector in HqB and � is an

assignment, and

∙ R ⊆ S × S is a relation such that for any ( , �) ∈ S , there is a ( ′, �′) ∈ S such that

(( , �), ( ′, �′)) ∈ R .

If S is finite then T is said to be finite, and ∣S ∣, which is the number of elements in S , is said to be the

size of T .

.. Interpreting QCTL Formulae over QMCLANG Models

�e key ingredients for evaluating  formulae are the quantum state ∣ ⟩and the classical
assignment function � for variables. Entanglement information about the quantum state is also
needed (the sets V and S in the  paper []), but as we shall see this information can be ex-
tracted from the quantum state directly, at least in the cases of interest. �e classical assignment �
corresponds to the union of all classical stores � ∈ Σ in our setting.

We consider the graph that results from joining all possible runs of a  program,
referred to as the program tree or execution tree, and use it in lieu of the quantum Kripke structure
which the authors of  have defined. �e elements of the program tree T corresponding to a
 program P are states (∣ ⟩, Σ,�) (see Definition .) linked by a relation⇒, such that:

For all transitions (P ,�, Σ, ∣ ⟩) −→P (P ′,�′, Σ′, ∣ ′⟩)
(∣ ⟩, Σ,�)⇒ (∣ ′⟩, Σ′,�′)

(.)

We are able to evaluate  formulae over a  program tree T computationally, as
detailed in the next chapter. Since a program tree contains all possible runs of a program, our
method is exhaustive and corresponds essentially to an explicit model checking procedure.
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.. Protocols and Properties Expressible

Within the QMCLANG–QCTL Combined Framework

In a nutshell, the framework for verification described in this chapter and extended with a
full implementation in the next provides capability to express protocols involving Clifford group
operators and computational basis measurements on pure states and to check the following classes
of property:

∙ properties described by simple EQPL formulae
∙ entanglement of a qubit in any state of the protocol with the other qubits in that state
∙ “equality” of qubit states at different times during a computation, subject to the require-

ment that the qubits in question are disentangled from the other qubits in the overall
states at those times
∙ properties described by temporal QCTL formulae.

.. Concluding Remarks

In this chapter we have described a specification language for quantum protocols which in-
cludes primitives that model the construction, manipulation and transmission of qubits. �e
operations permitted in the language, which is tentatively referred to as , are Clifford
operations and so the scope of the language is restricted to protocols expressible within the sta-
bilizer formalism. �is is the setting in which we will operate.

We have presented a formal operational semantics and a static type system for . �e
language models concurrency, asynchronous communication via named channels and involves
dynamic allocation of qubit variables. Aspects of the semantics are inspired by the language
PROMELA (especially the construct referred to here as an expression–statement, and the atten-
dant definition of executability). �e semantic definitions here are completely original work, and
even for PROMELA only a partial semantic definition exists [] which is not as detailed as
ours.

�e logics  (exogenous quantum propositional logic) and  (quantum computation
tree logic) have been discussed and their semantics given. Our implementation of the  model
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checker (see Chapter ) uses an enriched version of  (in particular, a version of  which
treats classical formulae as a subset of quantum formulae, and includes amplitudes and entangle-
ment formulae as in the original ) for the specification of properties to be verified.

We believe that  is apt for the description of quantum protocols since it has an intu-
itive, procedural syntax. �e development and use of  does not preclude possible future
extensions to the  model checker which would allow the use of other formalisms. In partic-
ular, it is envisaged that the quantum process algebra CQP [] could be used instead; however,
CQP has a richer syntax and would require extending the existing implementation significantly.

In the next chapter, we will discuss the functionality of the  tool and the algorithms which
it implements.



CHAPTER



IMPLEMENTATION

One man’s constant is another man’s variable.

— Alan Perlis

T         of a dedicated model checker for
quantum protocols. In previous chapters we have alluded to the  tool several
times; here we will describe  and aspects of its implementation. �e implemen-

tation of  took up the greatest part of the research work described, and the resulting program
has around , lines of Java code overall¹.
¹�e JavaNCSS metric was used to determine the size of the program, which comprises the  front–end (,
LOC) and the “StabSim” component (, LOC). �ese measurements were made on //, and the pro-
gram has grown in size since this date.


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Parser

Interpreter Scheduler Checker

Formula Parser

 

  

F .. ’s overall structure.

.. QMC Tool Description

 is a tool that automatically explores all possible behaviours arising from a protocol de-
scription expressed in  and enables  properties to be checked over the resulting
structure.

A protocol model consists of definitions of one or more processes. �e commands performed
by these processes are interleaved, in order to simulate concurrent execution. Nondeterministic
choices are resolved in all possible ways, producing a tree of all possible executions of the protocol.

�e  tool has three main components: () a process scheduler, () a language interpreter, and
() a model checker. �e role of component () is essentially to perform the tasks described in the
previous paragraph. �e language interpreter handles the execution of individual commands and
keeps track of the overall classical and quantum state at each step. Finally, the verifier is responsible
for evaluating  formulae over the structure generated by () and (). �is structure is depicted
in Fig. ..

 has a graphical user interface which includes a user–friendly editor for models and prop-
erties (see Fig. .).

Given a model and a  formula for verification,  outputs the following:
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F .. �e Graphical User Interface of .

∙ a summary of the files provided as input and basic feedback on the model provided,
including the number of states and the total number of runs,
∙ a verification result for the formula provided,
∙ a list of states (if any) that serve as counter-examples to the formula,
∙ and a prompt which allows the user to track individual states and trace runs of interest,

as well as to verify further formulae.

 also provides an interface to the DOT graph layout tool [], and the  applica-
tion [], which can display the program execution tree.

�e remainder of this chapter describes in turn various implementation aspects, and notably
the specific algorithms used in each of the components of  as presented in Fig. ..

.. Parser Implementation

�e inputs to  are  source files and property description files consisting of
/ formulae and various instructions. �ese inputs are passed to suitable parsers, one for
models and one for formulae. Both parsers have been implemented using SableCC [],
which is a (1) parser generator.



.. SCHEDULER IMPLEMENTATION 

�e benefit of SableCC is the flexibility to write many different “tree–walker” classes (in Java)
to traverse the parse tree of an input program.  includes a tree–walker for interpreting each
step in a  program, a separate tree–walker for evaluating state formulae (indeed, several
of these, one for each class of formula in ), another for evaluating temporal formulae.

Note that the grammar for  presented in Chapter  is ambiguous. �is ambiguity
has been resolved by using suitable transformations in the parser grammar.

.. Scheduler Implementation

�e purpose of the scheduler in  is to simulate the interleaving of all executable processes
in a given input model, at each step of the simulation. �e result of the scheduler–interpreter
interaction is the generation of an execution tree (see Section .) which is passed to the model
checker.

�e scheduler needs to store and update several variables as execution of a model proceeds:

∙ the “program counter” for each process, i.e. the current command (a guarded command,
a single statement or atomic block) to be executed,
∙ the current state of all variables and the current state of the tableau,
∙ the current position in the execution tree so as to store the result of the next execution,
∙ the current option and current statement within that option if executing a non–deterministic

choice,
∙ the index of the current loop iteration, which has to be less than an implementation–

dependent upper bound iMAX (see rules -3 and -4 in Chapter ),
∙ the number of processes which have completed,
∙ the number of processes which are blocked (non–executable),
∙ the total number of processes.

�e implementation of the scheduler is lengthy and complex, as it has to handle a large
number of possibilities, including explicit and implicit non–determinism in models. As we have
seen in Chapter , we treat indeterminate quantum measurements as being equivalent to a non–
deterministic choice between measurement outcomes (see also Eq. .).



.. INTERPRETER IMPLEMENTATION 

.. Interpreter Implementation

�e purpose of the interpreter is to perform the computational steps corresponding to the exe-
cution of a  statement. �e interpreter is invoked by the scheduler as execution proceeds
and is responsible for invoking the Aaronson–Gottesman algorithm (detailed next) whenever a
quantum operation or measurement is performed.

... Simulation Algorithm. At every point during execution of a model  keeps track
of ( ,�, 
1, ... , 
n) (for all n processes) where ∣ ⟩ in particular is the overall quantum state. �e
quantum state ∣ ⟩ is represented internally in an implicit way: rather than storing the so-called
state vector representation of ∣ ⟩ (which grows exponentially in length as a function of the total
number of qubits in ∣ ⟩), we use the stabilizer array representation, which is a binary representation
of the set of Pauli operators that fix (or stabilize) ∣ ⟩. Using the stabilizer array representation,
we gain significant computational benefits in terms of both space and time when simulating a
given protocol, given that simulation of stabilizer circuits is performed using a polynomial time
algorithm [], and the representation of the state grows polynomially with the number of total
qubits. Using this approach, the application of each unitary operator or measurement involves
updating the stabilizer array by applying suitable row or column operations. It is worth reminding
the reader here that only Clifford group gates may ever be applied; clearly it would not be possible
to update the tableau representation if a gate outside this group were to be used.

Consider the five–qubit basis state ∣ 1⟩ = ∣00000⟩. �e operators ZIIII , IZIII , IIZII , IIIZI ,
IIIIZ all stabilize ∣ 1⟩ since Z ∣0⟩ = ∣0⟩:

(Z ⊗ I ⊗ I ⊗ I ⊗ I ) ∣00000⟩ = ∣00000⟩

(I ⊗ Z ⊗ I ⊗ I ⊗ I ) ∣00000⟩ = ∣00000⟩

(I ⊗ I ⊗ Z ⊗ I ⊗ I ) ∣00000⟩ = ∣00000⟩

(I ⊗ I ⊗ I ⊗ Z ⊗ I ) ∣00000⟩ = ∣00000⟩

(I ⊗ I ⊗ I ⊗ I ⊗ Z ) ∣00000⟩ = ∣00000⟩
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We can represent the state ∣ 1⟩ uniquely by writing the list of these particular operators, which
generate its stabilizer group. To store the generators of a stabilizer group in a computer program
we use a check matrix []. Each line of the check matrix is a boolean array {ti} of length 2n + 1

which represents one generator. To represent the stabilizer operator

P =
n⊗

i=1

Pi = P1 ⊗ ⋅ ⋅ ⋅ ⊗ Pn, where Pi ∈ {I ,X ,Y ,Z} (.)

we set the values of ti as follows:

ti ← 0 and ti+n ← 0 if Pi = I

ti ← 1 and ti+n ← 0 if Pi = X

ti ← 1 and ti+n ← 1 if Pi = Y

ti ← 0 and ti+n ← 1 if Pi = Z

�e value of the last entry, t2n+1, is set to 1 to represent a positive overall sign or to 0 to represent
a negative overall sign. In practice the last entry is actually a pair of bits, as there are four possible
global phases (+1, −1, +i and −i).

�us, for example, the generating set of the stabilizer group of ∣ 1⟩ above is represented using
the following check matrix:

ℳ1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 1

0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(.)

Aaronson and Gottesman [] use a generalised version of the check matrix which they refer
to as a tableau. A tableau corresponding to a stabilizer state is an augmented check matrix con-
taining a set of destabilizer generators atop the stabilizer generators. �e stabilizer generators for a
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quantum state ∣ ⟩ ∈H n generate a subset of the Pauli group Pn; when these are taken together
with the corresponding destabilizer generators, they generate no longer a subset but the full Pauli
group Pn. �e destabilizer generators are necessary in the simulation algorithm to enable more
efficient computation of the effect of a measurement on the quantum state.

�us the representation of a quantum state which is used by the simulation algorithm is a
matrix of the form shown in Figure ..

T = [Ti ,j ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1,1 ⋅ ⋅ ⋅ T1,n T1,n+1

... . . . ... ...
Tn,1 ⋅ ⋅ ⋅ Tn,n Tn,n+1

Tn+1,1 ⋅ ⋅ ⋅ Tn+1,n Tn+1,n+1

... . . . ... ...
T2n,1 ⋅ ⋅ ⋅ T2n,n T2n,n+1

T2n+1,1 ⋅ ⋅ ⋅ T2n+1,n T2n+1,n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎬⎭Destabilizer Rows (n)⎫⎬⎭ Stabilizer Rows (n)

} Scratch Row︸ ︷︷ ︸
n columns

︸ ︷︷ ︸
phase

F .. �e structure of a stabilizer tableau.

Each row in the matrix of Fig. . corresponds to a Pauli operator of dimension n. In particular,
Ti ,j ∈ {X ,Y ,Z , I} and the operator in row i is the tensor product of the row entries (with the
overall phase factor in front):

Opi := Ti ,n+1 ⋅ Ti ,1 ⊗ ⋅ ⋅ ⋅ ⊗ Ti ,n

�e binary representation of T is a matrix T = [Ti ,j ] which takes the form shown in Fig. ..
�e Clifford group gates, which are the only operations we will allow in protocol models, can

be expressed as boolean functions of the entries in the check matrix. We assume that the check
matrix is T = [Ti ,j ], where Ti ,j represents the entry in row i , column j . We denote the bitwise
exclusive OR by ⊕ and conjunction by ⋅.

Using our notation for the binary tableau, the Aaronson–Gottesman simulation algorithm
may be stated as shown in Fig. .. Note that we have used a single symbol Ti ,j to denote all matrix
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T = [Ti ,j ] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T1,1 ⋅ ⋅ ⋅ T1,n T1,n+1 ⋅ ⋅ ⋅ T1,2n T1,2n+1

... . . . ... ... . . . ... ...
Tn,1 ⋅ ⋅ ⋅ Tn,n Tn,n+1 ⋅ ⋅ ⋅ Tn,2n Tn,2n+1

Tn+1,1 ⋅ ⋅ ⋅ Tn+1,n Tn+1,n+1 ⋅ ⋅ ⋅ Tn+1,2n Tn+1,2n+1

... . . . ... ... . . . ... ...
T2n,1 ⋅ ⋅ ⋅ T2n,n T2n,n+1 ⋅ ⋅ ⋅ T2n,2n T2n,2n+1

T2n+1,1 ⋅ ⋅ ⋅ T2n+1,n T2n+1,n+1 ⋅ ⋅ ⋅ T2n+1,2n T2n+1,2n+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎫⎬⎭Destabilizer Rows (n)⎫⎬⎭ Stabilizer Rows (n)

} Scratch Row︸ ︷︷ ︸
X-part (n columns)

︸ ︷︷ ︸
Z-part (n columns)

︸ ︷︷ ︸
phase

F .. �e binary tableau representation of a quantum state.

elements, while Aaronson and Gottesman denote the “X part” of the tableau (i.e. elements T1,1

to T2n,n) by xi ,j , the “Z part” of the tableau (i.e. T1,n to T2n,2n) by zi ,j , and the phase elements
T1,2n+1 to T2n,2n+1 by ri .

Note that the Pauli group operation is implemented as a special function rowsum(h,i)which
multiplies row i onto row h while taking into account the overall phase factor. �is function is
detailed in [].

.... Complexity of Simulating Stabilizer Circuits. According to [], the problem of simulat-
ing stabilizer circuits is complete for the classical complexity class⊕L (parity-L). According to [],
the complexity class ⊕L (Parity L) has the same relation to class L as ⊕P has to P . Complexity
class L is defined below.

Definition . (Complexity class L: Logarithmic Space). �e class of decision problems solvable by

a Turing machine restricted to use an amount of memory logarithmic in the size of the input, n. (�e

input itself is not counted as part of the memory.) L contains NC1 and is contained in generalizations

including NL, L/poly , SL, RL,⊕L, and ModkL.

It is important to note that the efficiency of the simulation is due to the compactness of the
binary representation of the tableau, and the ability to express quantum operators and measure-
ments as simple binary operations on the tableau. In our work it is often necessary to convert the
tableau representation to the more usual state vector representation of quantum states (as used in
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Algorithm -(T, operation, arguments)
. for all rows 1 ⩽ i ⩽ 2n do
. if applying the CNot gate from qubit a to qubit b then
. Set Ti ,(2n+1) ← Ti ,(2n+1) ⊕ Ti ,a ⋅ Ti ,(n+b) ⋅ (Ti ,b ⊕ Ti ,(n+a) ⊕ 1).
. Set Ti ,b ← Ti ,b ⊕ Ti ,a.
. Set Ti ,(n+a) ← Ti ,(n+a) ⊕ Ti ,(n+b).
. else if applying the Hadamard gate to qubit a then
. Set Ti ,(2n+1) ← Ti ,(2n+1) ⊕ Ti ,a ⋅ Ti ,(n+a).
. Swap Ti ,a and Ti ,(n+a).
. else if applying the Phase (�

4
) gate to qubit a then

. Set Ti ,(2n+1) ← Ti ,(2n+1) ⊕ Ti ,a ⋅ Ti ,(n+a).
. Set Ti ,(n+a) ← Ti ,(n+a) ⊕ Ti ,a.
. if measuring qubit a in the standard basis then
. if there exists a stabilizer row p ∈ {n + 1, ... , 2n} such that Tp,a = 1 then
. for all rows i such that i ∕= p and Ti ,a = 1 do
. Multiply row i by row p (using the Pauli group operation).
. Set the (p − n)th row equal to row p.
. Set the pth row to 0 (which corresponds to the identity operator).
. Set the phase of the pth row, Tp,2n+1 ← 0 or Tp,2n+1 ← 1 with equal probability.
. Set Tp,n+a ← 1.
. return Tp,2n+1 as measurement outcome.
. else
. Set the 2n + 1th row to 0.
. for all rows 1 ⩽ j ⩽ n such that Tj ,a = 1 do
. Multiply row 2n + 1 by row j + n.
. return Tp,2n+1 as measurement outcome.

F .. �e Aaronson–Gottesman simulation algorithm for applying Clif-
ford operations to the tableau representation of a quantum stabilizer state.

Chapter ). �e procedure to perform this conversion is implemented in Aaronson’s  simu-
lator and has also been used in , but it involves a maximum of 2n iterations for an n–qubit
state vector. In other words the conversion of an n–qubit tableau into the corresponding quantum
state vector has a cost which is exponential in n. Unfortunately this conversion becomes neces-
sary when checking several classes of  formula, although there is the notable exception of
entanglement partitions, which we will describe later in this chapter.

.... Optimising the Implementation of the Simulation Algorithm. �ere is actually scope for
optimising the implementation of the simulation algorithm, notably by using low-level binary
operations and by packing the stabilizer array representation into -bit registers, as Aaronson
and Gottesman chose to do in the final implementation of their  simulator (see [] for details).
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�e current version of  uses binary operations on entire integer registers, where every register
corresponds to a bit in the stabilizer array; the Java language does not provide modifiers such as
short and unsigned (which are used in ), which would have helped to make the representation
more space–efficient. However, a more efficient implementation of the binary representation of
stabilizer generators is likely to be possible using Java’s BitSet class [].

.. Model Checker Implementation

We now discuss the algorithms that  uses for the verification of properties of models. �e
core requirement is to evaluate quantum formulae 
 of  on states of the model, and to use
this as a component of the model checking algorithm for .

... EQPL Verification Algorithms and Complexity. �e reader is reminded that the se-
mantics of  is defined [] in terms of a quantum interpretation structure, which includes a
quantum state ∣ ⟩, a classical state � and a means of specifying entanglement partitions of ∣ ⟩.
In our setting � includes the global classical state, and we omit the explicit representation of
entanglement partitions, instead calculating them on demand.

Note that in  we have implemented the full  as described in [] and in Fig. ., not
just the fragment of  (“efficient ”) which is contained in  in []. �e differences
between the two are that: (i) full  treats classical formulae (�) as a special case of quantum
formulae whereas “efficient ” allows classical formulae only in probability terms (∫ �), (ii)
full  includes complex–valued terms (u), and (iii) full  includes entanglement partition
terms ([F ]). �e authors of the logic emphasise that, while full  is designed to embody the
first two postulates of quantum mechanics (see Section .), the restricted fragment of the logic
contained in  only embodies the first postulate. �is is significant as it affects the complexity
of model checking  formulae, as there are more cases in which a conversion from the tableau
representation to the state vector representation of quantum states is necessary.

Evaluating  formulae over any state ∣ ⟩ arising from the simulation of a protocol model
requires being able to determine all the valuations in that state, so that the truth value of any
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propositional constant (e.g.: qbi where 0 ⩽ i ⩽ N for an N-qubit system - this constant corre-
sponds to the state of the i th qubit in the quantum state) can be computed. What this means in
more practical terms is that, in order to determine whether a given qubit has valuation true () or
false () in the current state, it is necessary to extract all the basis vectors which are present in the
state vector expansion of ∣ ⟩. �e process of extracting all the basis vectors requires converting
from the space–efficient stabilizer array representation to the state vector corresponding to ∣ ⟩,
and this conversion can take up to a maximum of 2N steps if all the 2N basis vectors appear in
∣ ⟩ (as mentioned in Section ...). Even when ∣ ⟩ is a stabilizer state, it may contain all of
the basis vectors with non-zero coefficients. �erefore in general, evaluating a classical formula
requires solving a  problem, and of course this is -complete. �is observation seems rather
discouraging given that the process of verifying a state formula requires us to lose the efficient
state representation which is used during simulation. A useful direction for future work would be
to integrate an off-the-shelf -solver into .

However, there are cases for which we can avoid the conversion from stabilizer array to state
vector; for certain classes of formula we can extract the necessary valuation information by pro-
cessing the stabilizer array directly. We have observed that certain classical  formulae, which
do not involve the conjunction operator ∧, may be checkable on a given state ∣ ⟩ by just ex-
amining the contents of those columns in the stabilizer array corresponding to the qubits in the
formula. We are still investigating optimisations and heuristics such as this, bearing in mind that
the most general  formulae still require performing a state vector conversion.

It is also worth noting that the algorithm for checking qubit equality does not require ex-
tracting the full expansion of the quantum state, but can be checked by operating on the internal
stabilizer representation in an efficient way. Further note that checking qubit equality includes
an implicit but significant check that the qubits whose states are being compared are disentan-
gled from one another, and that in the implementation the whole quantum states to which these
qubits belong are compared directly.

Checking whether a given set of qubits constitutes a partition of a stabilizer state ∣ ⟩ is possible
using the polynomial time algorithm of Audenaert and Plenio [] for the so-called “bipartite
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Algorithm -(
):
. if 
 is of the form � then
. return -(�)
. else if 
 is of the form t1 ⩽ t2 then
. r1 ← (t1)
. r2 ← (t2)
. return r1 ⩽ r2
. else if 
 is of the form [F ] then
. Call (F ) to transform tableau into normal form
. Search for matching XZ pairs in the two portions of the tableau

. if such pairs are found then
. return true
. else
. return false
. else if 
 is of the form 
1 ⊐ 
2 then
. b1 ← -(
1)
. b2 ← -(
2)
. return (b1 ⇒ b2) { where⇒ denotes logical implication. }

Algorithm -(�) :=
. Compute all the valuations (basis vectors) in the quantum state, i.e. the full state vector
∣ ⟩.

. if � is of the form qB then
. for all valuations v in ∣ ⟩ do
. acc ← acc ∧ v(qB)
. return acc
. else if � is of the form ⊥ then
. return false
. else if � is of the form �1 ⇒ �2 then
. for all valuations v in ∣ ⟩ do

. b1 ← -(�1)
. b2 ← -(�2)
. acc ← acc ∧ (b1 =⇒ b2)

F ..  Verification Algorithm: Quantum and Classical Formulae.

Clifford Normal Form (),” which works directly with the stabilizer array. �is algorithm is
discussed in Section ...

.... Complexity. We now formalise the complexity of model checking  formulae. For
this calculation we consider only closed formulae (i.e. formulae without variables), following [].
We assume that basic arithmetic operations take O(1) time, and we use ∣�∣ to denote the length
of a formula �, namely, the number of symbols required to write it.
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In general,  formulae are evaluated over the explicit state vector representation of a quan-
tum state ∣ ⟩ on n qubits, which is a 2n array of complex numbers. To evaluate a quantum for-
mula 
 over a quantum state ∣ ⟩, we need to evaluate all the terms in 
. Evaluating a classical
formula � (which is a special case of 
) takes 2n ⋅ ∣�∣ steps as we need to traverse the set of all
valuations in ∣ ⟩ to determine which ones satisfy �.

Algorithm (t):
. if t is of the form x then
. return �(x)
. else if t is of the form r then
. return r
. else if t is of the form (∫ �) then
. Search for all valuations satisfying �. Call this S .
. if S = ∅ then
. return 0
. total ← 0

. for all valuations v ∈ S do
. c ← coefficient of v
. amp ← amplitude of c
. total ← total + amp2

. Return total .
. else if t is of the form t1 + t2 then
. m1 ← (t1)
. m2 ← (t2)
. return (m1 + m2)
. else if t is of the form t1 t2 then
. m1 ← (t1)
. m2 ← (t2)
. return (m1 ⋅m2)
. else if t is of the form Re(u) then
. m← (u)
. return Re{m}
. else if t is of the form Im(u) then
. m← (u)
. return Im{m}
. else if t is of the form arg(u) then
. m← (u)
. return arg {m}
. else if t is of the form ∣u∣ then
. m← (u)
. return ∣∣m∣∣

F ..  Verification Algorithm: Real Terms.
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Algorithm -(u):
. if u is of the form z then
. return �(z)
. else if u is of the form ∣�⟩FA then
. if state is not F -factorisable then
. return 0
. Search for valuations which satisfy �. Call this set S .
. if S = ∅ then
. return 0
. Search in S for a valuation which verifies (maps to ⊤) all q ∈ A. { If such a valuation

exists, it will be unique. }
. if no such valuation is found then
. return 0
. return the coefficient of the valuation found { this will be one of ±1,±i ,± 1√

k
,±i 1√

k

where k is the number of basis vectors arising in the state vector expansion }
. else if u is of the form t1 + it2 then
. m1 ← (t1)
. m2 ← (t2)
. return (m1 + i ⋅m2)
. else if u is of the form t1e

it2 then
. m1 ← (t1)
. m2 ← (t2)
. return (m1 ⋅ exp(i ⋅m2)
. else if u is of the form u then
. c ← -(u)
. return complex conjugate of c
. else if u is of the form (u1 + u2) then
. c1 ← -(u1)
. c2 ← -(u2)
. return (c1 + c2)
. else if u is of the form (u1 u2) then
. c1 ← -(u1)
. c2 ← -(u2)
. return (c1 ⋅ c2)
. else if u is of the form (� ⊳ u; u) then
. if b = true then
. return -(u1)
. else
. return -(u2)

F ..  Verification Algorithm: Complex Terms.
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However, in our setting there is the additional computational cost of computing the set of
all valuations from the tableau representation of the quantum state, which has a worst–case
complexity of 2n (based on the algorithm used in CHP []). So evaluating a classical  for-
mula over a stabilizer quantum state represented using a tableau has a worst case complexity of
2n ⋅ 2n ⋅ ∣�∣ = 22n ⋅ ∣�∣ = O(2n ⋅ ∣�∣).

�eorem . (based on []). Assuming that all basic arithmetical operations take O(1) time, there

is an algorithm O(2n ⋅ ∣
∣) to decide if an n–qubit stabilizer quantum state ∣ ⟩(represented using a

tableau) satisfies a quantum formula 
.

P. Observe that the logical terms which take longer to evaluate are the forms �, ∫ �,
∣⊤⟩FA (we ignore the form [F ] here because it can be evaluated in polynomial time for stabilizer
states using the algorithms described in Section ..). �e number of terms in the above forms
appearing in a formula 
 is bounded above by ∣
∣, and each of these requires travelling through the
set of all valuations and checking a classical formula. For the forms ∫ � and ∣⊤⟩FA we accumulate
intermediate results during evaluation (summing amplitudes or squares of amplitudes of those
terms satisfying a classical formula), but these are just arithmetic operations. As we have seen the
time complexity of evaluating these terms is exponential in the number of qubits n and linear in
the length of the formula.

�e remaining computations needed for arithmetic operations on real and complex values
take at most O(∣
∣) time, so that the total time needed to decide if a quantum state ∣ ⟩satisfies a
quantum formula 
 is O(2n ⋅ ∣
∣+ ∣
∣) = O(2n ⋅ ∣
∣). △

... Computation of Bipartite Entanglement Normal Form. �e most interesting class
of quantum state formulae for which an efficient implementation exists (thus avoiding the ex-
pensive state vector conversion) were those of the form [F ] where F is a list of qubit symbols,
i.e. entanglement partition formulae. Such a formula is true in the quantum state ∣ ⟩ if all the
qubits indexed within the square brackets may be separated from all the other qubits in the state
(that is to say, if qubits qi, qj, ... ∈ F are disentangled from the rest). We refer to a list of qubits
F = {qi, qj, ...} as a partition of the state ∣ ⟩ if the formula [qi, qj, ...] is satisfied by ∣ ⟩.
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We can evaluate such a formula on a stabilizer state by making use of the following theorem
due to Audenaert and Plenio [].

�eorem . (Bipartite Normal Form). Consider a system of n qubits, separated into two parties, A

and B, containing NA and NB qubits, respectively. Consider a stabilizer state described by an array of k

independent, commuting generators.

∙ By applying a suitable sequence of elementary row operations and local elementary column

(qubit) operations, the stabilizer array can be brought into the following normal form:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X I ⋅ ⋅ ⋅ I I ⋅ ⋅ ⋅ I X I ⋅ ⋅ ⋅ I I ⋅ ⋅ ⋅ I
Z I ⋅ ⋅ ⋅ I I ⋅ ⋅ ⋅ I Z I ⋅ ⋅ ⋅ I I ⋅ ⋅ ⋅ I
I X ⋅ ⋅ ⋅ I I ⋅ ⋅ ⋅ I I X ⋅ ⋅ ⋅ I I ⋅ ⋅ ⋅ I
I Z ⋅ ⋅ ⋅ I I ⋅ ⋅ ⋅ I I Z ⋅ ⋅ ⋅ I I ⋅ ⋅ ⋅ I
... ... . . . ... ... . . . ... ... ... . . . ... ... . . . ...
I I ⋅ ⋅ ⋅ X I ⋅ ⋅ ⋅ I I I ⋅ ⋅ ⋅ X I ⋅ ⋅ ⋅ I
I I ⋅ ⋅ ⋅ Z I ⋅ ⋅ ⋅ I I I ⋅ ⋅ ⋅ Z I ⋅ ⋅ ⋅ I
I I ⋅ ⋅ ⋅ I ∗ ⋅ ⋅ ⋅ ∗ I I ⋅ ⋅ ⋅ I ∗ ⋅ ⋅ ⋅ ∗
... ... . . . ... ∗ ⋅ ⋅ ⋅ ∗ ... ... . . . ... ∗ ⋅ ⋅ ⋅ ∗
I I ⋅ ⋅ ⋅ I ∗ ⋅ ⋅ ⋅ ∗ I I ⋅ ⋅ ⋅ I ∗ ⋅ ⋅ ⋅ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

party A
︸ ︷︷ ︸

party B

(.)

Here, the asterisk (∗) stands for either I or X .

∙ Every pair of rows containing the XZ combinations corresponds to two qubits (one from each

party) being in a pure maximally entangled  state and completely disentangled from the

other qubits. �e rows in the lower blocks of the normal form, containing only I andX operators,

correspond to the remaining qubits being in a (general, mixed) separable state.

∙ �e stabilizer state described by the stabilizer array is locally equivalent to a tensor product of

a certain number p of  pairs Ψ with a separable state. For any additive entanglement

measure E , the entanglement of the stabilizer state is pE (Ψ). An upper bound on p is given by

p ⩽ min(⌊k/2⌋, nA, nB). Equality is obtained if and only k = 2na = 2nb.

If we treat the qubits listed in the partition F of the formula [F ] of interest as party A in the
bipartite normal form shown, then it follows from part (ii) of the theorem that the existence of
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matching XZ pairs in parties A and B will indicate the presence of entanglement between the
qubits represented by the corresponding columns.

We omit the presentation of the  algorithm here, as it is thoroughly detailed, along with
a proof of correctness of �eorem ., in [].

.... Complexity. �e  algorithm involves a sequence of row and column operations on
a stabilizer array with k rows and n columns. For our purposes we always use k = n (since n gen-
erators are required to represent a unique n–qubit stabilizer state), and the tableau representation
has an additional k = n rows representing destabilizer generators. (In the  implementa-
tion, the  algorithm is modified to update not only the stabilizer generators, but also the
destabilizers.)

�e computational cost of a row operation is O(n) since all elements of a row are traversed,
and similarly for column operations. Since the entire stabilizer array is traversed (including the
phase column) during a run of the  algorithm, there is a time complexity of O(n2).

In the tableau representation described in Fig. ., there are 2n rows and 2n + 2 columns
overall; the  algorithm ignores the last (scratch) row. So in total the algorithm goes through
all of the 4n2 + 2n elements, and the time taken for this is O(4n2 + 2n) = O(n2).

To summarise, it takes polynomial time in n, the number of qubits, to bring the tableau
representation of a stabilizer state into a form which allows  formulae of the form [F ] to be
evaluated. �is is in contrast to other formulae, which in general require time exponential in n.

... QCTL Verification Algorithms and Complexity. �e temporal connectives of 
are implemented as an extension to the evaluator for  formulae, and involve the usual labelling
algorithms for computation tree logic [], which are applied to the tree structure generated by
. �e propositional fragment of the logic is just , so the  algorithm necessarily
invokes Algorithm -.

�e top–level algorithm for checking  formulae is Algorithm -, shown at the
top of Fig. .. �e crux of the algorithm is the function (�, T ), which will mark those
states of the program tree which satisfy the formula �. At any one time, this function will need
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SatT (
) = {∣ ⟩ ∈ S : ∣ ⟩ ⊩ 
} (.)
SatT (�1 ⊐ �2) = (S∖SatT (�1)) ∪ SatT (�2)) (.)

SatT (EX�) = {∣ ⟩ ∈ S : R(∣ ⟩) ∩ SatT (�) ∕= ∅} (.)
SatT (AF�) = FixedPoint[�X .{R−1X} ∩ X , SatT (�)] (.)

SatT (E[�1U�2]) = FixedPoint[�X .{R−1X ∩ SatT (�1)}, SatT (�2)] (.)

F .. Fixed point model checking algorithm for .

to initialise and refer to several different labellings, until the final labelling for the formula is
produced (the variable currentlabelling is a pointer to the current labelling). �e final result of
evaluating � is the value of the labelling for the root of the program tree, which is denoted by
currentlabelling [0] in -. We assume here that the variable currentlabelling has initialised
prior to running -.

�e presentation of the  model checking algorithms in Figs. . and . is very close
to the style in which they have been implemented in . �e presentation of model checking
algorithms for  and its variants (of which  is but one) is more usually given using fixed
points. We give such a description of the  model checking algorithm in Fig. ..

Let S denote the set of all states in the program tree T . We denote by SatT (�) the set of
states in T which satisfy �:

SatT (�) := {∣ ⟩ ∈ S : T , ∣ ⟩ ⊩ �} (.)

Let R denote a relation over the states in S such that, for all q, q′ ∈ S :

R(q, q′) if and only if q ⇒ q′ (.)

In the fixed point version of the algorithm, we use the relation R−1 defined thus:

R−1X = {q ∈ S ∣ ∃q′ ∈ X ,R(q, q′)} (.)

.... Complexity. �e temporal connectives of  are implemented in exactly the same
fashion as for the original logic . For a transition system T of size ST the complexity of
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Algorithm -(�, T ):
. (�, T )
. return currentlabelling [0] { �e formula � holds if the initial state of the execution tree T has

been marked as true at the end of the algorithm. }
Algorithm (�, T ):

. if � is of the form 
 then
. Clear currentlabelling
. for all states q in the execution tree T do
. if -(
) = true then
. currentlabelling [q]← true { this is the case when q ⊩ 
 }
. else
. currentlabelling [q]← false { this is the case when q ∕⊩ 
 }
. return currentlabelling
. else if � is of the form �1 ⊐ �2 then

. currentlabelling ← new labelling 1

. (�1, T )
. currentlabelling ← new labelling 2

. (�2, T )
. currentlabelling ← new labelling 3

. for all states q in the execution tree T do
. labelling 3[q]← (labelling 1[q] =⇒ labelling 2[q])
. return labelling 3

. else if � is of the form (EX�) then
. currentlabelling ← new labelling 1

. (�, T )
. currentlabelling ← new labelling 2

. for all transitions (q, q′) in T do
. if labelling 1(q′) = true then
. labelling 2(q)← true
. return labelling 2

F .. �e  model checking algorithm (continues in Fig. .).

verifying a  formula � has been shown to be O(∣�∣2 ⋅ S2
T ). �is extends naturally to ,

with the essential distinction that the computational cost of evaluating a propositional ()
formula is now O(2n ⋅ ∣�∣).

�eorem .. Assuming that basic arithmetic operations takeO(1) time, the algorithm -(�, T )

for model checking a  formula � over a program tree T takes O(∣�∣2 ⋅ S2
T ⋅ 2n) time.

P. �e propositional  model checking algorithm takes O(∣�∣2 ⋅ S2
T ) time. If a quan-

tum formula is treated as a propositional constant, then that would have been the complexity for
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Algorithm (�, T ) continued:
. if � is of the form E[�1U�2] then
. currentlabelling ← new labelling 1

. (�1)
. currentlabelling ← new labelling 2

. (�2)
. currentlabelling ← new labelling 3

. for all states q in the execution tree T do
. currentlabelling(q)← false
. seenbefore(q)← false
. if labelling 2(q) =  then
. Add q to the set L of states to process
. while L is nonempty do
. Draw a state q from L
. currentlabelling(q)← true
. for all predecessors q′ of q in T do
. if seenbefore(q′) = false then
. seenbefore(q′)← true
. if labelling 1(q′) = true then
. Add q′ to the set L of states to process
. return labelling 3

. else if � is of the form (AF�) then
. currentlabelling ← new labelling 1

. (�)
. currentlabelling ← new labelling 2

. for all states q in the execution tree T do
. if labelling 1(q) = true then
. Add q to the set L of states to process
. while L is nonempty do
. Draw a state q from L
. currentlabelling(q)← true
. if seenbefore(q′) = false then
. seenbefore(q′)← true { where q′ is the predecessor of q }
. if labelling 1(q′) = true then
. Add q′ to the set L of states to process
. return labelling 2

F .. �e  model checking algorithm (continued from Fig. .).

. However, a quantum formula must be evaluated for each quantum state in the program
tree, and we have found that checking a quantum formula on a quantum state ∣ ⟩ in our setting
requires time O(2n ⋅ ∣
∣) for a quantum formula 
. �e theorem follows directly. △
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.. Special Extensions

We have implemented two special extensions to the state logic in the implementation of 
which have proved useful in the development of examples and case studies. �eir importance is
demonstrated in the case studies and discussed further in Chapter .

We use the keyword history prior to a variable name to indicate to  that we are referring
to the history variable of that name, rather than the value of that variable in the current state. �is
is an extension to the original syntax of the logic. While  was originally intended to enable
reasoning about individual quantum states, this extension enables us to reason about the quantum
states that arise at different stages during a particular execution (run) of the protocol.

We have introduced an equality operator for qubits. We use it to compare the state of a qubit
at a particular point during a run of the protocol (after the overall quantum state ∣ ⟩ has been
explicitly saved) with the state of a different qubit at the end of the k-th run of the protocol
(when the overall quantum state is, say, ∣ ′k⟩, for all values of k). �e equality of qubits in two
different quantum states is well–defined only if the qubits in question are disentangled from the
other qubits in the respective states, otherwise these qubits do not have an individual state which
can be used in a comparison. �us a qubit equality formula implicitly incorporates a specification
of entanglement properties. Note that this notion of equality is an extension to the  logic
which we have implemented in , and its semantics is different from the notion of “qubit
equivalence” (denoted by⇔ in standard . Finally, we distinguish the qubit equality operator
“==” from the standard equality symbol “=” which we use in  for comparing classical variables
(integers, booleans, reals).

.. Concluding Remarks

In this chapter we have detailed several key aspects of the implementation of the Quantum
Model Checker (). �e emphasis has been on the algorithms used for model checking, in
particular, the algorithms for evaluating  formulae over individual quantum states, and the
algorithms for evaluating temporal () formulae over the execution tree corresponding to an
input program. �e complexity of these algorithms has been discussed, and we have noted that
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it is possible to escape the need to extract the set of all valuations for a quantum state ∣ ⟩ when
evaluating an entanglement partition formula by using the so–called Bipartite Normal Form of
Audenaert and Plenio.

Some small extensions to  have been described, but their significance will only become
apparent in the following chapter, which demonstrates our techniques (and the  tool in par-
ticular) for analysing specific quantum protocols.



CHAPTER



APPLICATIONS

Few things are harder to put up with than a good example.

— Mark Twain

A  QMC     of interest are described here,
including quantum teleportation, quantum coin–flipping, a network involving quan-
tum key distribution and quantum error correction, and quantum secret sharing.

.. Quantum Teleportation

�e first case study is the quantum teleportation protocol [] discussed in Section ... In
’s specification language, the protocol may be expressed as shown below. �is model teleports
an arbitrarily-chosen input state representable in the stabilizer formalism, i.e. one of ∣0⟩, ∣1⟩,


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1√
2
(∣0⟩±∣1⟩), 1√

2
(∣0⟩±i ∣1⟩). Because model–checking is exhaustive, the behaviour of the protocol

for all of these input states is automatically checked.

program Teleportation;

 var epr_to_A, epr_to_B: channel of qubit;

A_to_B: channel of integer;

 process EPRSource;

var q1,q2: qubit;

 begin

{ q1 := newqubit; q2 := newqubit; }

 { had q1; cnot q1 q2; }

epr_to_A ! q1;

 epr_to_B ! q2;

end;

 process Alice;

var q, ancilla, epr1: qubit; a,b: integer;

 begin

q := newqubit;

 if

□break;

 □X q;

□had q;

 □{ X q; had q; }

□{ had q; ph q; }

 □{ X q; had q; ph q; }

fi

 savequbit q;

epr_to_A ? epr1;

 { cnot q epr1; had q;
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a := meas q; b := meas epr1; }

 A_to_B ! a;

A_to_B ! b;

 end;

process Bob;

 var epr2: qubit; c,d: integer;

begin

 epr_to_B ? epr2;

A_to_B ? c;

 A_to_B ? d;

if

 □((c=0) and (d=0)) -> break;

□((c=0) and (d=1)) -> X epr2;

 □((c=1) and (d=0)) -> Z epr2;

□((c=1) and (d=1)) -> { Z epr2; X epr2; }

 fi

end;

 endprogram.

In our setting, we allow for global variables (such as epr1, epr2), typed communication
channels (such as epr_to_A) which are always global, and local (private) variables for each process
(such as a, b, c, d, q). Communication is asynchronous, with executability rules restricting the
way in which the interleaving of process is performed. For instance, the process Bob cannot start
unless channel epr_to_B is filled with a value. Note that the curly braces (‘{’ and ‘}’) are used to
group together a sequence of statements that must be executed in one step.

�e model shown above describes a system of three communicating processes EPRSource,
Alice, and Bob. �e process EPRSource represents a device which produces pairs of quantum
bits in the entangled state ∣Ψ⟩, and sends the first of these to Alice (through a channel epr_to_A)
and the second to Bob (through a channel epr_to_B). Note that the process Alice may begin
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independently of EPRSource; its first task is to create a qubit q and to place it in one of the six
possible states (there are only six since we are restricting the possible operations to those within
the stabilizer formalism; however, we can express the fact that any one of these possible states can
be prepared by Alice, through a non–deterministic choice in lines –. On line , the qubit
state that has been prepared is saved for later reference; thus we obtain a history variable which
will be used for the specification of the property of the protocol.

In line , Alice receives a qubit from the EPRSource process, and immediately after she
performs the operations that transform this qubit so that teleportation can occur. By performing
the operations on lines –, Alice influences the entangled state (and hence the qubit that Bob
receives on line ). �e idea is that measuring one qubit in an entangled state will affect the state
of the other qubit. When Bob receives the other qubit in the entangled state (line ), he can
transform it into the original state ∣ ⟩ depending on the outcomes of Alice’s measurements (the
values of variables c and d).

... �e Teleportation Property. �e requirement for the teleportation protocol described
in section . is that, at the end of the protocol, whatever the measurement outcomes, the third
qubit will be in the same state as the first qubit was to begin with.

To express this property, we need to compare the final state of the qubit Bob.epr2 with the
state of qubit Alice.q. What is important to note, however, is the state of Alice.q evolves
during the protocol (so it will not remain in the prepared state ∣ ⟩). We actually need to refer to
the state of this qubit just before the operations on lines — of the model are performed.

�is justifies the need for the statement on line , which “freezes” the state of qubit Alice.q
and the overall internal state at that particular step in the execution. We can then refer to the
state of this variable at that step using the history variable history Alice.q.

�e property we need to express must be stated thus:

history Alice.q == Bob.epr2 (.)
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Refer to Section . for an explanation of history variables and the equality operator for qubits,
which we are using here.

... Verifying Teleportation. �e model presented in section . and the property in sec-
tion .. may be supplied to  for verification directly.

�e teleportation model produces a transition system with , states in a total of ,
runs. It takes  seconds for  to construct this structure from the description of the protocol
on a machine with a .GHz Intel Core Duo processor and GB of memory. �e  formula
in (.) is shown to be true in all runs of the protocol.

.. Quantum Coin Flipping

We have built a  model for the quantum coin–flipping protocol due to Bennett and Bras-
sard [].

We model the quantum coin–flipping protocol in  as a system of two processes Alice
and Bob. A qubit is prepared by Alice by making a random choice between one of the four states:
∣0⟩, ∣1⟩, 1√

2
(∣0⟩ + ∣1⟩), 1√

2
(∣0⟩ − ∣1⟩). �e preparation of these states involves the application of

the H and X operators.
�e  model for this protocol is listed below.

program QuantumCoinFlipping;

 var AtoB, BtoA: channel of qubit;

A2B, B2A: channel of bool;



process Alice;

 var x, b, g, result: bool; q: qubit;

begin

 q := newqubit;

/*Choose one of the four BB84 states and prepare qubit q*/

 if

□true -> x:=false; b:=false;
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 □true -> x:=false; b:=true; had q;

□true -> x:=true; b:=false; X q;

 □true -> x:=true; b:=true; X q; had q;

fi

 AtoB!q;

B2A?g;

 A2B!b;

A2B!x;

 result := ((not (b and g)) and (b or g));

end;



process Bob;

 var g, x_hat, b_hat, x, b, result: bool; rq: qubit;

abort: bool; /*Bob aborts the protocol*/

 dontknow: bool; /*Bob cannot determine Alice’s honesty*/

begin

 AtoB?rq;

if

 □true -> g:=false; B2A!g;

□true -> g:=true; B2A!g;

 fi

/*Select random measurement basis and measure*/

 if

□true -> b_hat:=false;

 □true -> b_hat:=true; had rq;

fi

 x_hat:=meas rq;

/*Receive original b and x*/
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 A2B?b;

A2B?x;

 /*Compare bases and bits*/

if

 □((b=b_hat) and (not (x=x_hat))) -> abort:=true;

□(not (b=b_hat)) -> dontknow:=true;

 fi

result := ((not (b and g)) and (b or g));

 end;

endprogram.

... Verifying the Quantum Coin–Flipping Protocol. Upon successful completion, the
quantum coin–flipping protocol must ensure that Alice’s and Bob’s bit values, x and x̂ , are equal.
�us a successful run of the protocol will satisfy the formula:

Alice.result = Bob.result (.)

Note that the protocol doesn’t always succeed (as there is a possibility that Alice and Bob
make different basis choices, b ∕= b̂; in this case the protocol must be aborted and restarted later).
However, if Alice and Bob make compatible basis choices, the protocol should not abort. �is is
expressed thus:

AG (((b=b_hat) ∧ (x=x_hat)) =⇒ (abort = ⊥)) (.)

When the coin–flipping model is supplied to , it builds a transition system of , states.
�e above properties are satisfied as expected.

Note that we have not considered cheating scenarios or attacks on the protocol as of this
writing.

... Breaking the Quantum Coin–Flipping Protocol. �e properties discussed above are
merely correctness properties; it is far more desirable to reason about the security of the protocol,
and we are developing an extension of  that will be able to detect certain types of attack.
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�is particular protocol can be systematically subverted by using the properties of entangle-
ment. In particular, if Alice uses an entangled state, she can influence Bob’s measurement so that
the final common bit is the one she chooses.

() Suppose that Alice sends a qubit in an entangled state in step , e.g. of 1√
2
(∣01⟩ − ∣10⟩).

() After she receives the value of g , she measures her half of the state with basis b = a⊕ g .
Let x be the outcome.

() She knows that Bobs measurement will produce a totally anticorrelated value x̂ = 1⊕ x

if he uses basis b.

�us Alice can influence the outcome of the protocol to have value a by sending Bob the values
b and x ⊕ 1.

.. Quantum Key Distribution with Error Correction

In this section we consider a model of a system combining part of the quantum key distribu-
tion protocol BB [] with the quantum error correcting code described in [] (the quantum
bit flip code). We will discuss these protocols and proceed to explain the structure of a  model
for this system. �en we will turn to the verification of this model using the tool.

Quantum key distribution enables two users, Alice and Bob, to establish a common crypto-
graphic key which is secure in the presence of eavesdropping. �e two users are assumed to be
linked by a quantum channel (such as an optical fibre, through which qubits can be transmitted
in the form of polarised light bursts), and they also can communicate over a public, authenti-
cated, classical channel. �e attacker has full access to the quantum channel, but can only mon-
itor the classical channel passively. Quantum key distribution has been proven unconditionally
secure against all attacks permitted by the laws of quantum mechanics [] and implementa-
tions of this technology already exist, both in academic [] and commercial settings (see e.g.

http://www.idquantique.com). We consider a simplified version of the BB protocol for
quantum key distribution here, omitting some classical post-processing steps (esp. secret-key
reconciliation and privacy amplification, see [] for details) that the users must perform after
the quantum transmission is complete.
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�e BB protocol was described in some detail in Section ... �e protocol must be repeated
several times in order for a key to be established; a common key bit is generated every time Bob
makes a compatible basis choice for his measurement. We model one run of the protocol here.

A simple attack that can be made on this protocol is the following:

∙ �e attacker, Eve, intercepts the qubit that Alice has sent (note that it is impossible to
copy the qubit due to the no-cloning theorem of quantum mechanics []), chooses a
measurement basis of her own, and measures the qubit to obtain a (possibly correct) bit
value. She then sends the measured qubit to Bob.

It is not difficult to see that an incorrect choice of measurement basis by Eve would disturb
the qubit which Alice originally sent, placing it in a different basis state. It is possible for Alice
and Bob to detect this disturbance by exchanging a few of their bits.

We can model Alice’s behaviour as the following  process (we assume that the qubit q is
a global variable, and similarly for ch):

process Alice;

 var bit,basis:integer;

begin

 q := newqubit;

q1:= newqubit;

 q2:= newqubit; /*for redundant encoding of q*/

q3:= newqubit;

 q4:= newqubit; /*will be used for error recovery*/

if

 □basis:=0; bit:=0;

□basis:=0; bit:=1; X q;

 □basis:=1; bit:=0; had q;

□basis:=1; bit:=1; X q; had q;

 fi
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cnot q q1; cnot q q2;

 ch!q;

end;

Notice how Alice uses the X and H gates to prepare the different qubit states in each case. Ap-
plying the H gate essentially transforms a rectilinear basis state into a diagonal basis state.

�e processes describing the actions of Eve and Bob are quite similar, since both involve a
basis choice and a measurement. Here is the definition of Eve’s process in ’s input language.

process Eve;

 var ebit,ebasis:integer;

begin

 ch?q;

if

 □ebasis:=0;

□ebasis:=1; had q;

 fi

bbit := meas q;

 ch!q;

end;



process Bob;

 var bbit,bbasis:integer;

begin

 ch?q;

if

 □bbasis:=0;

□bbasis:=1; had q;

 fi
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bbit := meas q;

 end;

So far we have assumed that transmissions of qubits are noise-free, i.e. the communication
channels are perfect. Now we will revise our model to describe the case where a quantum error-
correcting code is used to recover from a single bit flip caused by a noisy channel. �e code
requires each individual qubit prepared by Alice to be redundantly encoded into a -qubit system,
so that the state ∣0⟩ is transmitted as ∣000⟩, and ∣1⟩ is transmitted as ∣111⟩ . We assume that the
quantum channel may induce a bit flip error on any one of the three qubits that are used in this
code; for instance, the channel might transform the state

1√
2

(∣000⟩+ ∣111⟩) into 1√
2

(∣010⟩+ ∣101⟩)

In this case, the second qubit has been disturbed by the channel. In order to detect such
an error, two additional qubits are used; they are known as ancillas. By applying a sequence
of operations and measurements to the ancillas, the so–called error syndrome is obtained, which
determines the location of the error. �en, the X operator is applied to the erroneous qubit, thus
restoring the initial quantum state of the –qubit system (i.e. 1√

2
(∣000⟩ + ∣111⟩) in the above

example). �e quantum circuit for the bit–flip code is given in Fig. . (Chapter ).
In order to account for the error correction in the model of the protocol we have been de-

scribing, we need to introduce: () two qubits q1 and q2 which are used to encode the original
state as a three-qubit state, () two qubits q3 and q4 corresponding to the ancillas which are used
to detect the location of the error in the three-qubit state. �e  process for Alice needs to
include the additional commands cnot q q1; cnot q q2; just before the transmission ch!q,
thus encoding the state of qubit q across the three qubits.

We model the channel that causes the disturbance as a separate process Disturb, defined
below:

process Disturb;

 begin
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ch?q;

 if

□X q;

 □X q1;

□X q2;

 fi

ch!q;

 end;

�e final part of the model consists of the process Correct, which is responsible for applying
the error correction procedure implemented by the circuit in Fig. ..

process Correct;

 var a,b: integer;

begin

 ch?q;

cnot q q3; cnot q1 q3;

 cnot q q4; cnot q2 q4;

a:=meas q3;

 b:=meas q4;

if

 □((a=1) and (b=1)); -> X q;

□((a=1) and (b=0)); -> X q1;

 □((a=0) and (b=1)); -> X q2;

fi

 ch!q;

end;

... Properties for Verification. �e model of a quantum key distribution system with an
error correcting component described in the previous section is quite realistic, given that we are
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taking into account the possibility of a direct attack on the protocol as well as the presence of a
noisy quantum channel. A larger system for quantum key distribution might also involve quantum
teleportation, so that a qubit is transferred not via a direct quantum channel but through the use
of entangled quantum states. We discussed the quantum teleportation protocol in Section ..
separately.

�ere are number of combinatorial possibilities which arise during quantum key distribution.
Depending on the choices of basis made by Alice, Bob and Eve, it may or may not be possible
to detect Eve’s presence. For instance, a compatible choice of basis by all three users implies
that Eve’s measurement of the transmitted qubit does not cause a disturbance to its state. �ere
will be cases when the outcome of Bob’s measurement matches the choice of bit originally made
by Alice, cases in which Eve’s measurement is correct, and so on.  explores all possibilities
automatically and constructs the correct tree structure for the model described. We can verify
different  formulae expressing success or failure of the protocol. For instance, the BB
protocol normally succeeds to produce a key bit if Alice and Bob use compatible basis choices, i.e.

when the following state formula is satisfied (bbasis and bbit are the variables corresponding
to Bob’s chosen basis and bit value):

((basis=bbasis) =⇒ (bit=bbit)) (.)

�is property applies to the entire protocol including the quantum error correction procedure.

.. A Quantum Error Correcting Network

It is our opinion that data networks which are implemented using quantum protocols are
likely to be a practical setting for secure communications in the future. Such systems are easily
expressible in , and these are ideal targets for verification with .

In this section we consider an example of a system consisting of a number of users in a network;
the network is modelled by a set of channels between the users, and we assume that these channels
are binary symmetric, so that with specified probability p (for our purposes we assume p = 1

2
),

the channels in the network will corrupt the bits, and with probability 1 − p they will transmit
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the bits without error. �e users perform quantum error correction to recover the correct bits in
this system.

We begin by presenting a  process which models the quantum error correction pro-
cedure described in Section ... �is protocol is able to correct a single bit flip error on any one
of three qubits. �e process Correct assumes the existence of a qubit channel ch upon which
the original qubit q is sent. Qubits q1 and q2 are used to code the original qubit into a –qubit
message, while the qubits q3 and q4 are ancillas which are used for error detection and recov-
ery. Note that a syndrome of a = 0, b = 0 denotes the absence of an error, and in this case no
correction is applied (the expression–statement true has no effect on the state).

process Correct;

 var a,b: integer; q:qubit;

begin

 ch?q;

cnot q q3;

 cnot q1 q3;

cnot q q4;

 cnot q2 q4;

a:=meas q3;

 b:=meas q4;

if

 □((a=1) and (b=1)); -> X q;

□((a=1) and (b=0)); -> X q1;

 □((a=0) and (b=1)); -> X q2;

□((a=0) and (b=0)); -> true;

 fi

ch!q;

 end;
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Next we consider how to model a (quantum) binary symmetric channel (with p = 1
2
, where

we use a non-deterministic choice between two options to model equiprobable events).

process BSC;

 begin

ch?q;

 if

□X q; /* disturb qubit q */

 □true; /* don’t do anything */

fi

 ch!q;

end;

�ese small examples demonstrate the key ideas that underlie the larger model discussed next,
comprising two users, Alice and Bob, who are each independently linked to a quantum network
or “cloud”. A source prepares a qubit (in any one of the six possible states permitted in the
stabilizer formalism) and passes it to Alice, who encodes it (thus producing a three–qubit state).
�e network is modelled by a process which makes choices as to whether to disturb each of the
three qubits. Bob is the receiver of this data, and he is the one performing the error correction.

Remark .. �is model use a special convention introduced in the latter stages of development of .

A sequence of statements enclosed in braces (’{’ and ’}’) is treated by  as a single execution step. In

other words, braces enrich the  formalism with what is known as an atomic construct.

program QECC_Parallel;

 var ch_source, ch_alice_net, ch_bob_net : channel of qubit;

 process Source;

var q : qubit;

 begin

q := newqubit;
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 if

□ Z q; // |0>

 □ X q; // |1>

□ had q; // 1/sqrt2 (|0> + |1>)

 □ {X q; had q;} // 1/sqrt2 (|0> - |1>)

□ {had q; ph q;} // 1/sqrt2 (|0> + i|1>)

 □ {X q; had q; ph q;} // 1/sqrt2 (|0> - i|1>)

fi

 ch_source!q;

end;



process Alice;

 var q, q1, q2, saved: qubit;

begin

 ch_source?q; // input qubit 0

saved := savequbit q;

 { q1:= newqubit; // prepare qubit 1

q2:= newqubit; } // prepare qubit 2

 { cnot q q1;

cnot q q2; }

 ch_alice_net!q;

ch_alice_net!q1;

 ch_alice_net!q2;

end;



process Network;

 var q : qubit;

begin
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 ch_alice_net?q;

if

 □X q;

□true;

 fi

ch_bob_net!q;

 ch_alice_net?q;

if

 □X q;

□true;

 fi

ch_bob_net!q;

 ch_alice_net?q;

if

 □X q;

□true;

 fi

ch_bob_net!q;

 end;

 process Bob;

var q, q1, q2, q3, q4 : qubit;

 a, b: integer;

begin

 ch_bob_net?q;

ch_bob_net?q1;

 ch_bob_net?q2;

q3:= newqubit; // ancilla 1
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 q4:= newqubit; // ancilla 2

cnot q q3;

 cnot q1 q3;

cnot q q4;

 cnot q2 q4;

a:=meas q3;

 b:=meas q4;

if

 □((a=1) and (b=1)); X q;

□((a=1) and (b=0)); X q1;

 □((a=0) and (b=1)); X q2;

□((a=0) and (b=0));

 fi

{cnot q q1;

 cnot q q2;}

end;



endprogram.

... Property for Verification. �e correctness property for the quantum error–correction
network is formulated as:

history Alice.saved == Bob.q (.)

Note the use of a history variable; we are specifying here that the state of the original qubit
(which Alice ’saves’ using the savequbit keyword prior to encoding) must be the one Bob re-
ceives at the end of the exchange.  shows that the model of the quantum error correcting
network does indeed satisfy this property.
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.. Quantum Secret Sharing

�e structure of quantum secret sharing protocols which use graph states was described in
Section ... Here we present  models for the protocol (k = 3, n = 3).

�e (k = 3, n = 3) involves the preparation and distribution of the graph state:

∙

��������

????????

∘ ∘ ∘

where we are denoting by ∙ the node/qubit upon which the secret is encoded. Other nodes are
simply shown as ∘.

program QuantumSecretSharing3_3;

 var

D_to_P1, D_to_P2, D_to_P3 : channel of qubit;

 P1_to_P2, P1_to_P3,

P2_to_P1, P2_to_P3,

 P3_to_P1, P3_to_P2: channel of integer;

 process Dealer;

var q1, q2, q3: qubit; bit: bool;

 begin

// ---- Prepare

 { q1 := newqubit; q2 := newqubit; q3 := newqubit; }

{ had q1; had q2; had q3;

 // CZ 1->2:

had q2; cnot q1 q2; had q2;

 // CZ 1->3:

had q3; cnot q1 q3; had q3; }

 // ----
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// Decide on a secret bit and encode onto vertex 1

 if

□bit := 0;

 □{ bit := 1; Z q1; }

fi

 // Send qubits to players

D_to_P1 ! q1;

 D_to_P2 ! q2;

D_to_P3 ! q3;

 end;

 process Player1;

var q: qubit; u, x, y, z, finalkey: integer;

 begin

D_to_P1 ? q;

 had q;

u := meas q;

 P2_to_P1 ? x;

P3_to_P1 ? y;

 // XOR operation expressed in terms of AND, OR, NOT

{ finalkey := ((1 - (u*x)) * (u+x));

 finalkey := ((1 - (finalkey*y)) * (finalkey+y));

finalkey := ((1 - (finalkey*z)) * (finalkey+z));

 }

end;



process Player2;

 var q: qubit; x: integer;
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begin

 D_to_P2 ? q;

x := meas q;

 P2_to_P1 ! x;

end;



process Player3;

 var q: qubit; y: integer;

begin

 D_to_P3 ? q;

y := meas q;

 P3_to_P1 ! y;

end;



endprogram.

�e description of quantum secret sharing in  is very natural; two special remarks
are in order, however. Firstly, since  initialises with a computational–basis state, it is necessary
for the Dealer process to perform some preparation steps to create the initial graph state (lines
—).

Secondly, the computation of the XOR of all players’ outcomes is performed here in an elab-
orate way¹ In order to compute r := u ⊕ x ⊕ y ⊕ z , we use the identity

a ⊕ b = ¬(a ∧ b) ∧ (a ∨ b) (.)

and we compute r in three steps thus:

() r := u ⊕ x = ¬(u ∧ x) ∧ (u ∨ x)

() r := r ⊕ y = ¬(r ∧ y) ∧ (r ∨ y)

¹�is is because there is no built-in XOR operator in QMC for boolean variables, and also because integer variables
u, x, y, z, have been used instead of booleans, so XOR needs to be expressed in terms of arithmetic operations).
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() r := r ⊕ z = ¬(r ∧ z) ∧ (r ∨ z)

�e correspondence between the above and lines — in the above code should be evident
to the reader.

... Properties for Verification. To verify the correctness of the protocol described by the
model in the previous section, we ask  to check the properties:

Player1.finalkey ⩽ Dealer.bit (.)

Dealer.bit ⩽ Player1.finalkey (.)

It is necessary to use two properties to express the simple equality between the final key ob-
tained and the original dealer bit, because the implementation of  only has a less–than–or–
equal (⩽) operator. Checking this formula takes just over  sec. on the hardware described in
Section ...

.. Concluding Remarks

In this chapter we have looked at five case studies, specific protocols for which we have built
and run  models. We have demonstrated the capabilities of the modelling language 
and the property specification language. �e progression of case studies has been in order of
increasing complexity, starting with a simple protocol (quantum teleportation) and proceeding
to larger systems (quantum key distribution, a quantum error–correcting network and quantum
secret sharing). We note here that there is some overlap between the quantum key distribution
system and the quantum error-correcting network, since the former incorporates a quantum error
correction step as an intrinsic part of the protocol, but the nature of the two models is different;
one describes a system combining two sub–protocols, while the other describes a network of
different users performing small steps to obtain a common outcome.



CHAPTER



REVIEW AND CONCLUSION

Enough research will tend to support your conclusions.

— Arthur Bloch

W      a specification and verification framework for mod-
elling and analysis of quantum information protocols, based on the method of model–
checking. We have developed a formal modelling language, , defined its syn-

tax, semantics and type system, and implemented it as part of a model–checking tool, . We
have studied, extended, and implemented Exogenous Quantum Propositional Logic () and


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Quantum Computation Tree Logic (). �e  tool implements model–checking algo-
rithms for / formulae over the semantic structures corresponding to  pro-
grams. Here we summarise and discuss the work presented, and outline directions for future
work.

.. Summary

Below is a detailed summary of the work presented in the thesis.

Chapter .: In the first chapter we discussed the emergence and significance of the quan-
tum computation and quantum information discipline. We considered the characteristics
of quantum systems which make them usable as information carriers and exposed their
peculiarities (e.g. nondeterminism). Some key results of this field were surveyed and the
motivations for protocol analysis presented. A short overview of formal methods (and
particularly model–checking) was given, and relevant previous work by the author and
colleagues was identified. A brief survey of related work included discussion of quan-
tum programming languages, semantic techniques for quantum computation, quantum
information logics, and quantum simulation.

Chapter : described all the theoretical background of relevance to this work, including the
nuts and bolts of quantum computing and the stabilizer formalism. A detailed account
of several quantum protocols was given, with a view to showing the variety that exists,
while exposing common characteristics. Not all of the protocols presented in this section
were included in later analyses, yet an understanding of them is considered fundamental
to our subject matter.

Chapter : detailed an approach to the analysis of quantum protocols based on existing
tools and techniques, especially probabilistic model–checking. �e development of an
experimental tool, , was described. Our purpose in this chapter was to show
why existing tools and techniques are not adequate for the modelling and analysis of
quantum protocols, thus justifying the need for a more targeted approach such as the one
presented in subsequent chapters.
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Chapter : focussed on the modelling language , which we developed for use in
conjunction with . �e full definition of the language includes syntax, operational
semantics, an executability predicate (these last two implicitly define an abstract machine
for the language), and a static type system. �e logics  and , originally due to
Mateus and Sernadas [], were explained and linked to the semantic structures produced
when running  programs.

Chapter : gave an account of all aspects of the implementation of the Quantum Model
Checker (QMC), which implements  as a modelling language and a signif-
icant fragment of  and , for the case where quantum states in the stabilizer
formalism only are considered. �is restriction is significant, as it prevents modelling
and analysis of arbitrary quantum computations. �e implementation of  is based
on an efficient (polynomial time) simulation algorithm, but requires time exponential in
the size of the system being modelled to be produce verification results.  is the key
practical contribution of this thesis.

Chapter : discussed the application of  to a number of real quantum protocols, and
demonstrated some of its features in practical use. Where available, some performance
figures were provided. �e example protocols considered were quantum teleportation,
quantum coin–flipping, quantum key distribution, quantum error correction, and quan-
tum secret sharing.

.. Discussion

Next we will discuss the basic tradeoff between efficiency and generality that underlies the
implementation of the Quantum Model Checker. We will consider the benefits of our approach
and address some shortcomings and potential criticisms.

... Efficiency versus Generality. At the outset of this work our stated objective was to
develop a modelling and analysis framework that was sufficiently general for realistic applications,
while bringing the benefits of model checking techniques (which had already been demonstrated
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in the literature on classical communication and cryptographic protocols) to the novel setting of
quantum computation and quantum information.

After initial experimentation with existing verification tools and techniques (as presented in
Chapter ), we became aware of the fact that the already restricted class of protocols that we
were able to model could be modelled and simulated in this way as a direct consequence of the
Gottesman–Knill �eorem. Since the stabilizer formalism afforded substantial flexibility and
accounted well for entanglement (a key feature of most important quantum protocols), we did
not see confinement to this formalism as a major limitation for practical applications.

�e existence of an efficient simulation algorithm for stabilizer circuits was an important factor
in our choice to restrict protocols of interest to those expressible within the stabilizer formalism.
�is, however, may be seen as a significant limitation to our approach.

While this design choice has led to an efficient simulation component, the verification of pro-
tocol properties is not as efficient. Unfortunately, the state formulae of the property specification
logic require a computationally expensive conversion from the stabilizer array representation to
the full state vector description of a quantum state. �e one exception to the rule is the check-
ing of entanglement partition formulae, which are checkable on an individual stabilizer state in
polynomial time.

Practical experiments have shown that the efficiency issue is not a major one for current ap-
plications, since large input sizes (protocols manipulating many decades or hundreds of bits) are
rarely encountered in the literature. We believe, therefore, that we have produced a useful verifi-
cation tool that may help significantly in the analysis (and possibly design) of practical quantum
protocols for various communication tasks.

�e restriction to stabilizer states, which accounts for the efficiency of the simulation, is non–
negligible. Designers of quantum protocols should ideally be unfettered in their choices of possi-
ble input/output states and gates (which need not be limited to those in the Clifford group). We
believe that future work should address this limitation by extending  to allow for a universal
set of quantum gates.
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... Benefits and Criticisms. �e work we have presented includes a modelling language
whose semantic definition is extensible, so that a universal set of quantum gates may easily be
added. Taken in isolation,  is an expressive, practical modelling language with static
typing, that may be used in future simulation and analysis tools.

�e language and logic used in  are both candidates for extensions and improvements, but
combining the two as described in this thesis gives rise to a useful formal verification framework,
as demonstrated by several case studies.

�e  implementation is a useful testbed for protocol experimentation and development.
Certainly it can be used to analyse other protocols, and models of quantum networks.

It is only too easy to direct criticisms at the complexity of the verification algorithms employed
by . Certainly the benefits of using the stabilizer representation are lost during most verifica-
tions. We feel that this concern has been addressed through the introduction of the final–states
mode in the tool in which, when properties pertaining only to final protocol outcomes need to
be checked, only the final states of all protocol runs are stored; the cost of storing and convert-
ing to state–vector form each intermediate state arising in a run is prevented in this way, thus
improving overall efficiency of verification. Furthermore, the efficient checking of entanglement
partition formulae (which would otherwise involve the exponential cost of converting between
state representations, as with all other formulae) has been implemented.

Regarding the protocols chosen to test and demonstrate , the following remarks are in
order. Although the teleportation example is simple, it is an important building block for practi-
cal long-distance quantum communication and cryptographic systems. In contrast to pen-and-
paper proofs of correctness of teleportation, our verification explicitly models the protocol as a
distributed system, and could be extended to a larger system within the same framework. �e
other examples are more substantial.

For the protocols considered here, none has been demonstrated to have a flaw; we are aware
of this, and we hope that in future work  will be used to explore attacks, and to highlight
vulnerabilities and subtle flaws on protocols.
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Our work on analysing quantum secret sharing protocols is promising in that it may be pos-
sible to use  to find new (as of yet, undiscovered) protocol variants. Why should particular
values of (k , n) correspond to successful secret sharing protocols and not others? Verifying secret
sharing protocols for different values of k and n with  might yield insights into the underlying
structure and/or cause.

It should be added that our techniques may provide the basis for developing automated proofs
of unconditional security (or the absence thereof ) for some protocols. Mayers’ proof of the un-
conditional security of quantum key distribution, for instance, would benefit from simplification,
generalisation to similar protocol variants, and a more uniform presentation (one that does not
require recourse to diverse mathematical disciplines and specialised notations). Maybe model
checking techniques can provide a useful step in achieving this. �e impossibility of uncondi-
tionally secure quantum bit commitment may also be demonstrable in an elegant fashion using
 or –inspired methods.

... Future Work. We describe next a number of directions for future work based on 
and the associated formal verification framework.

.... Generalisation to Mixed States and a Limited Number of non–Clifford Gates. According
to the original paper of Aaronson and Gottesman [], it is possible to generalise the tableau
representation of stabilizer states, and the associated algorithm, to simulate circuits involving
mixed states and a limited number of non–Clifford gates. �is would be a useful extension to the
existing  implementation.

.... Generalised Pure States or Alternative Restrictions. As we have discussed, it would be
useful for  to be generalised so that non–stabilizer states and a universal set of quantum gates
may be included in protocol models. �is requires a substantial reworking of the internals of the
tool so that a stabilizer representation can be used where possible, and a state vector representation
everywhere else. We note here that, to form a universal set, only the �

8
gate needs to be added.

Another possibility of interest is the introduction of an alternative restricted set of quantum
states and operators (as opposed to stabilizer states and Clifford operations). It may be useful to
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implement the  representation of quantum states in .  enables the representation
of a different but still restricted class of quantum circuits (and hence protocols), and this may be
interesting for some applications.

.... Complexity Improvements and SAT Solvers. Martin Plenio has intimated¹ that it should
be possible to avoid the state vector conversion for several simple types of  formulae. It seems
that it is possible to extract more information about the state being represented directly from the
corresponding tableau. Such efficiency improvements are clearly desirable.

Since the problem of checking an  formula on a quantum state containing all possible
basis vectors is an instance of , there are likely to be certain kinds of formula for which the
algorithms implemented in currently available  solvers offer improvements in efficiency. �is
is likely to be an important future experiment.

.... A Process–Algebraic Modelling Language. At the time the process algebra  was con-
ceived, it had been envisaged as the definitive modelling language for quantum protocols. Pro-
viding a direct interface from  to  is a significant task as it would enable users of the tool
to benefit from the expressiveness of the process algebra.

A partial translation from  to  has been developed already by Timothy Davidson
(University of Warwick) and is continually in development.

.... Language and Tool Improvements. Of interest is the possible extension of  to
allow for synchronous communication; at present, only asynchronous channels are supported. Such
an extension would lend more credence to the –to– translation described previously, since
it is currently necessary to generate complex code fragments that simulate the synchrony.

Other analysis modes could be added to , e.g. a means of computing probabilities of
different runs. Links with probabilistic logics and probabilistic model checking tools are likely to
emerge here.

.... Alternative Approaches — Symbolic Model Checking, Bisimulation, Automated �eorem

Proving. �roughout the course of the work presented in this thesis, several alternative methods
for quantum protocol analysis suggested themselves. It was proposed e.g. that a symbolic approach
¹M.B. Plenio, Private communication, December .
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(as opposed to the explicit–state approach taken here) might be a good means of combatting the
inevitable state space explosion. Such approaches have been used effectively in the verification of
classical hardware, and also for protocols.

As mentioned in Section .., a process–algebraic approach to the verification of protocols
would involve the definition of suitable equivalence relations, such as bisimulation of processes.
Developing algorithms to check bisimulations of  or  processes may well be an interesting
technique to consider.

Finally, it has been clear from the beginning that a model checking approach is likely to work
well only for manageable, finite protocols (due to the finiteness requirement for the state space,
common in model checking). Infinite–state model checking techniques do exist, but they are not
as mature as finite methods. It is practically impossible to produce proofs of correctness involving
a high degree of generality (as needed e.g. for unconditional security proofs for cryptographic
protocols) using only model checking, and this restricts the applicability of . Automated
theorem proving, on the other hand, does enable a human user to produce powerful and wide–
ranging proofs, provided that suitable (meta–) theories have been developed. �is alternative
approach may be a fruitful avenue of investigation for proving properties of quantum protocols
in a formal way.

.. Conclusions

As quantum technology becomes more commonplace, and as we have discussed the constant
miniaturisation of computing devices makes this a historic inevitability, we are forced to con-
sider ways of designing and reasoning about its different manifestations. �e author personally
believes that cryptographic applications (and increasing security and privacy concerns) will drive
this market, and that relevant analysis tools and techniques are tantamount to its eventual success.
It is hoped that the present work has provided a good indication of how such techniques may be
implemented.
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