
The University of Warwick

❦

TECHNIQUES FOR DESIGN

AND VALIDATION

O F Q U A N T U M P R O T O C O L S

Nikolaos K. Papanikolaou

❦

A THESIS SUBMITTED TO

THE DEPARTMENT OF COMPUTER SCIENCE

IN CANDIDACY FOR THE DEGREE OF

MASTER OF SCIENCE BY RESEARCH

Academic Supervisor: Rajagopal Nagarajan

Coventry, September 2004

Typeface: URW Palatino 11/13

Typesetting: LATEX 2ε

The typography of this document is dedicated to Jan Tschichold (1902-1974), in memoriam.

Copyright c 2004-5 by Nikolaos Papanikolaou
All rights reserved

To my parents

Contents

List of Illustrations v

List of Tables vii

Preface ix
Acknowledgements . xiii

Abstract xv

1 Introduction and Preview 1
1.1 The Wire-Tap Channel . 2
1.2 Conjugate Coding . 4

1.2.1 Fundamental Properties of Quantum Systems 4
1.2.2 Oblivious Transfer and “Quantum Money” 6

1.3 Quantum Key Distribution . 8
1.3.1 Cryptographic Keys . 10
1.3.2 The One-Time Pad . 11

1.4 Other Quantum Protocols . 11
1.4.1 Bit Commitment and Coin Flipping . 11
1.4.2 Entanglement-Based Protocols . 12

1.5 Protocol Specification and Verification . 13
1.6 Scope and Contents of the Following Chapters . 14

2 A Survey of Quantum Protocols and Security Criteria 15
2.1 Elements of Quantum Theory . 16

2.1.1 Bases and Representations . 17
2.1.2 The Nature of Quantum Measurement . 18
2.1.3 The State of a Composite Quantum System 19

2.2 Perfect Secrecy and Security . 21
2.3 Quantum Key Distribution in Detail . 23

2.3.1 The BB84 Protocol . 24
2.3.2 The B92 Protocol . 29
2.3.3 The E91 Protocol . 30
2.3.4 Comparing the Three Protocols . 33
2.3.5 Secret-Key Reconciliation and Privacy Amplification 34

iii

2.3.6 Security Criteria for Quantum Key Distribution 37
2.4 Dense Coding . 38
2.5 Quantum Teleportation . 39
2.6 Summary . 40

3 Model Checking Techniques 41
3.1 System Specification, and Description Languages 42
3.2 Property Specification . 44

3.2.1 Temporal Logic . 45
3.2.2 Linear Temporal Logic (LTL) versus Computation Tree Logic (CTL) 46

3.3 Verification . 47
3.4 The SPIN Model Checker . 47
3.5 The PRISM Model Checker . 49

3.5.1 Distributions and Probabilistic Transition Systems 49
3.5.2 Discrete Time Markov Chains . 51
3.5.3 Markov Decision Processes . 52
3.5.4 Probabilistic Computation Tree Logic (PCTL) 52

3.6 Modelling the Measurement of an EPR Pair . 53
3.6.1 Specifying EPR Pair Measurement Using Logic 53
3.6.2 Specifying EPR Pair Measurement Using Probabilities 56
3.6.3 Model Checking EPR Pair Measurement with PRISM 59

3.7 Summary . 60

4 Analysis of BB84 using PRISM and SPIN 61
4.1 Two PRISM Models of BB84 . 63

4.1.1 Model of BB84 with Intercept-Resend Eavesdropping 64
4.1.2 Model of BB84 with Random-Substitute Eavesdropping 67

4.2 Desired Properties of BB84 and Verification Results 67
4.2.1 The Probability of Detecting an Eavesdropper 69
4.2.2 The Number of Correct Bits Obtained by an Eavesdropper 71

4.3 A Simple SPIN Simulation Model of BB84 . 72
4.4 Summary . 75

5 Specification Formalisms and Related Work 77
5.1 The CQP Formalism . 78
5.2 QPAlg: Another Quantum Process Algebra . 80
5.3 Quantum Logic and its Application to Protocols . 80
5.4 The qSpec Language . 82

5.4.1 qSpec by Example . 84
5.4.2 Understanding qSpec and its Operational Model 87

5.5 Quantum System Simulation . 88
5.6 More on Probabilistic Model Checking . 89
5.7 Summary . 90

6 Recapitulation and Directions for Future Work 91
6.1 Review and Valuation of this Work . 91
6.2 Open Issues and Trends . 93
6.3 Conclusion . 93

7 Appendix: SPIN Simulation Model of BB84 95

Notes 99

Bibliography 103

List of Illustrations

1.1 Wyner’s wire–tap channel. 3
1.2 An illustration of the effect of a polarising filter on an incoming beam of light. . . . 7

2.1 The conceptual procedure underlying all quantum key distribution protocols. . . . 24
2.2 The BB84 Protocol. The quotations are from the original paper by Bennett and

Brassard (1984). 27
2.3 The B92 Protocol. 31
2.4 The E91 Protocol — Part 1. 34
2.5 The E91 Protocol — Part 2. 35

3.1 A description of a trivial classical protocol in the csp style. 43
3.2 An example of an imaginary protocol which illustrates various features of the promela

language. 44

4.1 The probability that Eve is detected in the BB84 Protocol while performing an
intercept–resend attack, as a function of the security parameter N. 69

4.2 The probability that Eve is detected in the BB84 Protocol while performing a random–
substitute attack, as a function of the security parameter N. 70

4.3 The probability that Eve, by performing an intercept–resend attack, obtains more
than 1

2 the total transmitted bits correctly in BB84, as a function of the security
parameter N. 71

4.4 The probability that Eve, by performing an random–substitute attack, obtains more
than 1

2 the total transmitted bits correctly in BB84, as a function of the security
parameter N. 72

4.5 A message sequence chart for BB84 produced by SPIN, assuming no eavesdropping. 74

5.1 A cqp model of the quantum teleportation protocol. 78
5.2 A simplified model of BB84 using the QPAlg process algebra. The definitions of the

agents A, B, E are omitted here for simplicity. 80
5.3 A simplified model of the B92 protocol, as used by Van der Meyden and Patra to

define the protocol’s properties in the quantum logic. 83

v

List of Tables

2.1 The different cases that arise when an eavesdropper uses the wrong basis to mea-
sure a photon, and sends the result to user B. 28

3.1 Notation used to build a formal, abstract model of EPR Pair Measurement. 54

vii

Preface

No greater need has ever arisen in human societies than the need for effective com-
munication. In the information age that we live in, more than ever in history, we are
faced with the problem of exchanging data quickly and accurately. Enabling technolo-

gies, such as global inter–networks, are partly a remedy for this problem and partly a cause for
its aggravation; for the high speed of such tools as electronic mail and on–line video conferencing
helps to raise people’s expectations.

At the same time, the educated layman is becoming increasingly aware of the need for secure
communication. Purchasing items from the Internet is almost an everyday task for many people,
yet the security of such a transaction is commonly regarded as dubious. In recognition of the
security threats associated with computer technology, businesses are investing greater and greater
sums to ensure the integrity and privacy of corporate data. To quote from a recent Microsoft
Progress Report1, by Bill Gates:

“ Security is as big and important a challenge as any our industry has ever tackled. It

is not a case of simply fixing a few vulnerabilities and moving on. Reducing the impact of

viruses and worms to an acceptable level requires fundamentally new thinking about software

quality, continuous improvement in tools and processes, and ongoing investments in resilient

new security technologies designed to block malicious or destructive software code before it can

wreak havoc. It also requires computer users to be proactive about deploying and managing

products. ”

Actually, the task of transferring information from one place to another integrally, efficiently
and securely is as old as mankind itself. A rudimentary instance of this task is fire signalling,
used by ancient civilisations such as the Greeks to communicate the occurrence of a particular
event. Consider, for a moment, the use of a fire signal to announce victory in a battle. A fire signal
expresses an integral message, in the sense that it has a clear, unambiguous meaning, namely that
a battle has been won. However, it is inefficient, since it is not certain that the message will be
received (a receiver, located in a different city, would have to be constantly looking out for a fire
in a specific place), and there is trouble in setting it up. Finally, a fire signal is an insecure kind of
communication, in the sense that the enemy can intercept it inasmuch as the intended receiver.

ix

x ❦ Preface

It is widely believed that enforcing a discipline on communication is an effective means of
satisfying the requirements of integrity, efficiency and security. Such a discipline is known as a
protocol. Protocol is a concept that originates in international diplomacy, where it is used to estab-
lish a commonly agreed set of rules between representatives of different countries and cultures;
these rules enable fruitful cooperation.

The term protocol was introduced into computer science discourse in 1967 by R.A. Scantlebury
and K.A. Bartlett at the National Physical Laboratory in England. They used it in a memorandum
entitled “A protocol for use in the npl data communications network”2. In this context, a protocol
is a procedure which enforces a discipline on the form and sequencing of data, as well as the exact
meaning of possible messages.

Since then, data networks have taken many forms and sizes, and protocols have become pro-
gressively more complex. This complexity has made protocols extremely error–prone. In this
respect, protocols may be likened to computer algorithms. Algorithms also specify a disciplined
procedure for solving a problem; moreover, they have to be defined in such a way as to handle
unexpected scenarios, for example erroneous input.

The obvious way to test how prone a given algorithm is to error is to run it on all possible
inputs and observe its output. There are at least two major problems with this approach:

1. One has to imagine all the possible inputs that could be given to the algorithm.

2. It is enormously time–consuming, if not impossible, to exhaustively test an algorithm.

These problems can only really be addressed for small, simple algorithms. Moreover, the same
problems arise in the development of protocols.

Therefore, methods for rigorous definition and testing of protocols and algorithms are essen-
tial. In the last ten years, the field of formal methods has flourished in response to precisely that
need. This has led to the development of numerous specification languages and automated test-
ing tools. It was precisely such a tool, fdr, that helped Gavin Lowe discover a flaw in the widely
used Needham–Schroeder Public–Key authentication protocol3. This is heralded as one of the
greatest successes of the formal approach to system design and validation.

The application of formal methods to protocols for computer networks was studied exten-
sively by Gerard Holzmann in the 1980s and culminated in the creation of an automated verifica-
tion tool, spin

4. In April 2002, the Association for Computing Machinery awarded to the creator
of spin the System Software Award for 2001. This is a very strong indication of the importance
and utility of spin and similar validation tools.

In September, 2003, Holzmann was interviewed for Fawcette Technical Publications on the
subject of spin

5. His words on the utility of this tool for practical applications are distinctive:

“ At Lucent Technologies we used spin over a period of two years to check that the call–

processing software for a new telephone switch was free of concurrency–related bugs. The code

was heavily multi–threaded, as most applications are these days. The call–processing code was

also considered to be the most difficult part of the switch to get right: it really forms the heart

of the switch. [...]

During the lifetime of this product, not a single software defect was reported in this part of

the code: a highly unusual phenomenon, and a testament to the effectiveness of the spin–based

Preface ❦ xi

approach to testing. Today, spin tends to be used mostly for critical software development, and

more sporadically in routine software development. At nasa/jpl, for instance, spin is used to

check that the critical components of flight software for space missions are bug–free. ”

While computer scientists and engineers have been witnessing the enormous growth of their
field, from the age of room–sized computers to the age of “model checking” with spin another
revolution has been taking place in physics. The world of the atom is no longer a theoretical
curiosity, but is getting more and more amenable to direct observation. Through the synergy
of physicists and computer scientists, we have come to realise that quantum–mechanical effects
can be put to use for efficient computation, as well as for secure communication. It is this last
discovery of quantum cryptography that will concern us mostly in this thesis, whose objective is to
demonstrate the application of formal methods to protocols for quantum communication.

Quantum Technology

One of the greatest visionaries that ever lived was the Nobel Prize-winning physicist Richard P.
Feynman. His renowned talk, “There’s Plenty of Room at the Bottom”6, spawned a revolution in
physical science. Feynman’s ideas are widely regarded as the precursor to nanotechnology, since
he suggested that there was no fundamental obstacle to “writing the entire 24 volumes of the
Encyclopaedia Britannica on the head of a pin”. More than 40 years later, we are witnessing an
endless miniaturisation of electronic circuits, an ever–increasing mass of information to handle,
and a great variety of technologies for its storage. Feynman’s suggestion is definitely not nearly
as absurd today as it was in 1959, when it was made. A naïve extrapolation of Moore’s Law leads
us to conclude that we will be able to transcribe a single bit of information on an atom in about
20 years from now7. This is no trivial issue for, the ability to manipulate objects on the atomic
scale while coping with the associated quantum mechanical phenomena is a promise physicists
have yet to fulfil. In order to store data onto individual particles, highly advanced experimental
methods are needed.

It follows from the above that the transition to quantum technology is an inevitable conse-
quence of miniaturisation. In addition to this, quantum–mechanical phenomena may be exploited
so as to perform feats of computation hitherto considered impossible. Therefore, an understand-
ing of such phenomena is of great importance to the computer scientist.

The very notion that fundamental elements of matter could be used for computational pur-
poses has led to the study of quantum computers. If ever such devices were constructed, quantum
algorithms to perform prime factorisation and inverse database searching efficiently could be im-
plemented. The ability to compute the prime factors of a given number is of great significance,
since this would permit the inversion and direct violation of several cryptographic systems in
common use today. The interested reader is referred to the standard literature on the subject for
more details8.

A clear distinction is made by researchers in the field between the study of quantum compu-
tation and the study of quantum information. The latter is concerned with such matters as the
capacity of quantum channels (i.e. communication channels operating on quantum–mechanical
principles) and rates of transmission on these channels. Furthermore, the theory of quantum in-
formation also deals with quantum cryptography and various proofs of its security. Schemes for

xii ❦ Preface

exchanging information using quantum–mechanical phenomena (e.g. entanglement) are referred
to as modes of quantum communication.

If a new name should be given to the era we are entering, it definitely has to be “The Era
of Quantum Technology”. The combined advancement of quantum computation and quantum
information theory will be its main novelty.

Implications of Quantum Technology

In order to come to terms with the challenge posed by this advancement, an in–depth analysis
of fundamental physical phenomena is necessary. Such an analysis undoubtedly will lead to a
better understanding, and potentially the resolution, of many open problems in quantum theory.
Several conundrums have arisen from the theory, and even Albert Einstein was never completely
satisfied with its predictions. For instance, at the atomic level, nature exhibits randomness; we can
never know with certainty the exact position of an electron orbiting around an atomic nucleus.
Quantum theory provides rules for obtaining the probability of finding the electron at a particular
point in space. The widespread belief that the universe is causal, which had been upheld since
the time of Newton, has collapsed in the face of this apparent randomness. Einstein is often
remembered for having said “I do not believe that God plays dice”9. This is a philosophical claim
that cannot be proved, but if we are to accept the quantum theory, we have to regard it as false.
Developments in the area of quantum computation and information are likely to provide insights
into such foundational issues.

It goes without saying that these developments will create a closer bond between the disci-
plines of physical and computer science. This bond is far from artificial, since it has long been
recognised that the centerpiece of computer science, digital information, is inherently a manifes-
tation of nature; this is expressed clearly in Rolf Landauer’s dictum “Information is inevitably
physical”10.

The Role of Computer Science

The implementation of quantum computers and quantum information carriers clearly impinges
on experimental physics and the ability to harness the effects that occur at the atomic level. It is
therefore largely the duty of physicists to provide a foundation for such developments. This does
not diminish, however, the role of computer scientists in the growth of this new field. The disci-
pline of computing has much to offer in terms of design techniques and mathematical principles.

Since quantum–mechanical devices are still mostly a matter of theoretical speculation, we can
only imagine or attempt to simulate their behaviour. Existing methods for system modelling
and analysis are useful and applicable to this endeavour. Of particular importance to the subject
matter of this work is the practice of formal methods. As mentioned at the beginning of this
chapter, these include a number of notations and software tools that can be used for designing
and testing abstract models.

Preface ❦ xiii

Aims and Objectives of This Work

The present work is concerned with the detailed study of cryptographic and general communica-
tion protocols that involve the exploitation of quantum–mechanical effects. In particular, all such
protocols will be identified and recognised as a class. Furthermore, these quantum protocols will
be modelled and analysed carefully using existing software tools. The spin software mentioned
in previous sections will be considered to this end, as well as the prism tool developed at the
University of Birmingham. The results of analyses made using these tools will be presented. At-
tention will be paid to the limitations of existing tools and languages in view of the particularities
of quantum protocols.

The focus then turns to the development of a new programming language and associated
software interpreters, suited especially for the formal description and the simulation of quan-
tum protocols. Connections will be made with existing “quantum programming languages”, and
potential extensions of the core language (e.g. to account for future developments) will be con-
sidered.

Acknowledgements

I am greatly indebted to my supervisor, Dr. Rajagopal Nagarajan, for his friendly encouragement
and support for the duration of this work. Also, I wish to express my gratitude to Dr. Jane Sinclair,
who consented to review this document prior to submission. I also thank Dr. Huibiao Zhu for
useful discussions on the concept of process bisimulation.

A great many thanks are due to Dr. David Parker and Dr. Gethin Norman, currently with the
Department of Computer Science at the University of Birmingham, who provided much needed
assistance with the prism tool.

xiv ❦ Preface

Abstract

The objective of this thesis is to perform formal specification and automated validation of the
class of protocols associated with quantum cryptography.

Current analyses and proofs regarding quantum cryptographic protocols and their security
are information-theoretic and also require in–depth understanding of the underlying physics.
The alternative approach presented here involves the use of computer modelling languages and
verification software. In particular, the logical model checker spin

11 and the probabilistic model
checker prism

12 are used to analyse quantum key distribution, entanglement and quantum tele-
portation.

The value of our approach lies not only in the fact that it is conceptually simpler than existing
proofs, but in that it allows us to disambiguate protocol definitions and to assess their properties
in various circumstances. By varying the values of certain parameters, different attacks on the
protocols can be attempted and implementation–specific attributes can be analysed.

The quantum key distribution protocol13 BB84 has been proved to be unconditionally secure
against all types of eavesdropping14. Although a general proof of this result is extremely hard to
generate automatically, it is possible to develop specific protocol attacks and validate the proto-
col by computer. Assuming two types of eavesdropping attack (intercept–resend and random–
substitute), we have used the prism tool to compute exactly the probability of successful eaves-
dropping, and found it to diminish as the number of transmitted qubits is increased. This result
is linked to Mayers’ security criteria15 for BB84. Also, we briefly describe a new quantum proto-
col definition language, named qSpec

16. The recent cqp process algebra, due to Nagarajan and
Gay17, is reviewed and examples of its application are provided. Alternative formalisms and val-
idation tools are discussed, including QPAlg, probmela and probUSM18, the logic of knowledge
and time for quantum systems due to Van der Meyden19, and the QCSim simulator20.

xv

xvi ❦ Preface

1
Introduction and Preview

In the 1980s it was realised for the first time that quantum-mechanical phenomena may be
used directly for manipulating, storing and communicating digital information. Of major im-
portance was the discovery of quantum algorithms for prime factorisation and inverse search,

which outperformed the best known classical algorithms significantly1. However, to implement
any one of these algorithms, a quantum-mechanical computer is necessary. To date, little progress
has been made in constructing a full–scale quantum computer.

The storage and manipulation of digital information form the centerpiece of computer sci-
ence. Theoretical computer scientists tend to regard information as an abstract entity, with an
existence above and beyond hardware and software. It was not long ago, however, that this view
was refuted with Landauer’s observation that information is inevitably tied to a physical repre-
sentation2. Landauer argued that information could only exist when manifested in some physical
form, and this was good cause for a paradigm shift; there was evidence of an important link
between physics and computing.

Programmers and computer users alike are familiar with Moore’s law, which is concerned with
the rapid increase in the power of computer hardware over time. The trend it predicts has been
upheld by computer hardware since Moore’s time and, it is believed, is likely to continue to do so
for the foreseeable future. If this does occur, the continuous miniaturisation of electronic circuits
will soon lead to the subatomic scale. There will come a time when a single bit of information
will be transcribed onto an object the size of an atom. In order to manipulate such minute objects,
knowledge and application of quantum theory will be necessary. The need will also arise for
effective physical means of storing, transforming and transmitting these objects.

Clearly, it is valuable to investigate the possibilities that quantum theory has to offer for com-
putational purposes. Using various aspects of the quantum world, data can be represented in a
very effective manner, and computations can be made massively parallel. Testament to this ob-
servation are the quantum algorithms discovered for factorisation and inverse database search,
which both provide major improvements over methods currently in use3.

Research in the field of quantum information has led to the observation that quantum-mechanical
effects can provide not only increased computational efficiency, but can also be used to expedite
the transmission of information in a highly secure manner.

1

2 ❦ Chapter 1. Introduction and Preview

Stephen Wiesner4 conceived of communication channels with no analogue in classical physics
and computing using such effects. This paved the way for quantum cryptography, allowing trans-
missions which it is impossible, in principle, to eavesdrop. Since the observation of any quantum
system is destructive, any attempt to obtain information encoded therein can be detected. This
is in contrast to conventional transmission media, on which it is possible to eavesdrop passively,
thus going completely unnoticed.

It has been shown that the standard protocol for quantum key distribution, “BB84,” is secure
against all possible attacks5. Therefore, with respect to our current understanding of quantum
theory, BB84 is immune against eavesdropping and there is no known way to systematically sub-
vert a perfect implementation of it6.

Since the discovery of the efficient prime factorisation algorithm, it has been acknowledged
that a quantum computer would likely be capable of easily breaking cryptosystems in use today,
such as RSA. The possibility of quantum cryptography is a relief in this sense, because it signifies
the emergence of a new kind of cryptography, which cannot be broken even using a quantum
computer.

Whereas quantum computers are still mostly a theoretical possibility, the techniques of quan-
tum cryptography have been implemented experimentally and shown to work as expected. Quan-
tum key distribution has been performed over optical fibres as well as over open air. A great
amount of research has been initiated to create practical quantum cryptography systems7.

The idea of a quantum network has arisen as a valuable possibility for defence as well as for
commercial purposes. Since perfectly secure quantum communication links can be made, data
transfer will be improved greatly. The darpa agency in the United States is investigating such
a possibility, and a European research consortium (“secoqc”) has been established for similar
purposes.

1.1 The Wire-Tap Channel

Quantum cryptography is an attempt to provide a solution to the problem of secure data trans-
mission. Suppose that a data sequence is to be transmitted over a communications channel. At
the receiver, there is a wire–tapper or eavesdropper which is trying to gain unauthorised access
to the data. The issue that needs to be tackled is whether there exists a way of preventing the
eavesdropper from succeeding, while transmitting the data reliably to the receiver.

In order to prevent corruption of the data due to imperfections in the transmission medium,
some form of channel coding is necessary. Also, a cryptographic mechanism must be put in place
so as to avert the eavesdropper. As we shall see shortly, it is possible to devise a coding scheme
that fulfils the objectives of cryptography as well. Before discussing this, it is valuable to phrase
the problem of secure transmission in more formal terms.

The situation can be described as follows: we have a noisy communication system that is be-
ing wire–tapped through a second noisy channel. The transmitter, or source, emits a sequence of
bits fskg. The sequence is encoded, using a suitable scheme, into a binary sequence fxkg. The
communication channel C1 induces a certain number of errors, and the channel output is, thus,
yet a new sequence fykg. At the receiving end, the sequence fykg is subjected to a wire–tap
through a second noisy channel C2, supplying the eavesdropper with bits fzkg. Finally, the legit-

1.1. The Wire-Tap Channel ❦ 3

imate receiver decodes the output of C1 to recover, at least partly, the transmitted sequence. As a
consequence of channel errors the decoded sequence fbskg differs from the transmitted sequence
in certain positions. The situation is shown diagrammatically in Figure 1.1.

Figure 1.1 Wyner’s wire–tap channel.

Sender
fskg // Encoder

fxkg // Channel C1
fykg //

fykg
��

Decoder
fbskg // Receiver

Channel C2

fzkg
��

Eavesdropper

We define the probability of error as the quantity

Pe =
1
N

N

∑
k=1

Pr fbsk 6= skg (1.1)

where N is the length of the transmitted sequence. Clearly, a system designer would be concerned
with developing a coding scheme that minimises Pe. For this purpose there exists a great number
of error–correcting codes.

The most common model for a noisy channel that carries binary data is the binary symmetric
channel, which is characterised by a crossover probability p0. This quantity determines the chance
that a ‘0’ is flipped into a ‘1’ by the channel and vice versa. The behaviour of a binary symmetric
channel with crossover probability p0 is described by the following expression, which relates the
output of the channel to its input8:

PrfYn = y jXn = xg = (1� p0) � δxy + p0 � (1� δxy) (1.2)

If we assume that the noisy channels in the system of Figure 1.1 are binary symmetric, it is
easy to deduce that the eavesdropper is likely to encounter difficulty in obtaining the transmitted
sequence. The greater the crossover probability of the two channels, the greater the chance of
receiving a corrupt bit value and thence of errors in the intercepted sequence fzkg. Even when
an error correction scheme is employed, the eavesdropper does not have access to the decoded
sequence fbskg and can only conjecture as to the content of the transmitted message.

Another objective of the system designer will therefore be to maximize the level of uncertainty
and confusion of the eavesdropper, which corresponds to the so–called equivocation of the data as
seen by the eavesdropper. The equivocation ∆ quantifies the uncertainty of the eavesdropper about
the sequence fykg given the result fzkg of her observations. Its value is, in general,

∆ =
1
N
� H(y1, . . . , yN j z1, . . . , zN) (1.3)

where H is the Shannon conditional entropy associated with the wire–tap channel C2, and N is

4 ❦ Chapter 1. Introduction and Preview

the length of the transmitted sequence.
The above presentation realistically assumes the presence of noise in the communication sys-

tem. Noise causes difficulties not only to the eavesdropper, but also to the legitimate receiver of
the message. Noise can be effectively combatted using error–correcting codes. The problem that
remains is how to code messages to ensure secrecy. In the case of a perfect (i.e. noiseless) channel,
it is possible for an eavesdropper to intercept an entire transmission successfully.

Wyner (1975) discusses in detail the situation presented here and shows that there exists a
tradeoff between the rate of transmission and the equivocation of the eavesdropper. In order to
maximise an eavesdropper’s uncertainty, a coding scheme necessarily reduces the transmission
rate. An excellent exposition of the general coding problem and the theoretical foundations of
cryptography is that of Welsh (1998). Also, Hamming (1986) discusses classical error–correcting
codes and information theory in general.

1.2 Conjugate Coding

Suppose that there was a way of coding data that:

❧ prevents, with arbitrarily high probability, an eavesdropper from intercepting transmissions
correctly;

❧ makes manifest to the legitimate users of the communication channel the presence of an
eavesdropper.

Such a coding scheme would be capable of resolving the problem presented in the previous sec-
tion.

A scheme of this kind was suggested by S. Wiesner and is known as conjugate coding9. The
principle is to represent the data to be transmitted using the states of elementary quantum me-
chanical systems. For instance, each bit in a binary sequence can be represented using a hydrogen
atom, with a ‘0’ corresponding to the atom’s ground state and a ‘1’ to its excited state. Other
examples of two–level quantum systems that can be used to represent binary values are:

❧ Spin– 1
2 particles (spin is an attribute of particles, for our purposes a kind of angular momen-

tum with two discrete values, + }
2 and � }

2);

❧ Polarised photons (discussed at length in section 1.2.2).

Thus, information is conveyed by variations in a quantum state — and quantum states exhibit
several intriguing properties.

1.2.1 Fundamental Properties of Quantum Systems

A two–level quantum system such as a hydrogen atom or spin– 1
2 particle can exist in a state

which is a superposition of its two basis states. If the basis states are taken to represent bit values of
‘0’ and ‘1’, the superpositions correspond to “mixtures” of ‘0’ and ‘1’; it is possible for a quantum
system to denote a ‘0’ and a ‘1’ simultaneously. This observation leads to the possibility of massive

1.2. Conjugate Coding ❦ 5

computational parallelism, which is where the emphasis is put in quantum computation. For our
purposes it suffices to note that the state of an elementary two–level quantum system can be
written as a linear combination of its two basis states:

jψi = α � j0i+ β � j1i (1.4)

A quantum state is conventionally written as a vector in the Dirac notation, i.e. in the form
jψi. For a system with two levels, jψi belongs to a two–dimensional complex vector space H2,
which is spanned by basis states j0i and j1i. Also note that α and β are complex numbers with
jαj2 + jβj2 = 1. A two–level quantum system is referred to as a quantum bit, or qubit.

Another crucial aspect of quantum states is that their value at any given moment cannot be
obtained directly. In fact, it is not possible to observe a quantum system without irrevocably
perturbing its state. The theory predicts that a system described by (1.4) will, when measured
with respect to j0i and j1i, change its state to one of j0i or j1i at random. This randomness
is inherent in Nature; the coefficients α and β above are the square roots of the probabilities of
obtaining j0i or j1i, respectively. We refer to this phenomenon as probabilistic measurement.

There is a further complication associated with measurement. Measurement is always per-
formed with respect to a set of basis states. A two–dimensional vector space can be spanned by
arbitrary pairs of vectors, not only j0i and j1i above. A different basis, say fj+i , j�ig, could be
used instead, as long as the basis vectors j+i and j�i are mutually orthogonal. It is just as plausi-
ble to measure a state of the form (1.4) with respect to the basis fj+i , j�ig. In this case, quantum
theory predicts that the result of the measurement will be one of j+i or j�i, at random. We use
the term conjugate to describe bases with the property defined below:

Definition 1.1 (Brassard (1988)) Two bases are termed conjugate if a system prepared in a specific
state of one basis will behave entirely randomly, and lose all its stored information, when subjected to
measurement corresponding to the other basis.

It is possible to alter states without performing a measurement. On one hand, quantum sys-
tems evolve naturally in accordance with the so–called Schrödinger equation; on the other hand,
unitary transformations may be applied to states in order to manipulate them directly. In direct
analogy to Boolean gates, quantum algorithms and protocols make use of quantum gates, which
are predefined unitary transformations.

In a classic paper for physicists10, it was proved that quantum states are impossible to clone.
Through an intuitive argument it is easy to understand why this is true. In order to replicate the
state of a given quantum system, that state has to be known in the first place. However, only a
measurement can yield useful information about a quantum system and measurement changes
the current state. So it follows that it is impossible to copy a quantum state.

Let it be noted that transformations on quantum states have a property with no classical coun-
terpart: they are reversible; thus, any transformation can be undone. A Boolean not gate is re-
versible, because it is always possible to compute the value of the input for a given output; but
the same cannot be done for the and gate, whose single output is not enough to determine what
the inputs were. Reversibility is a property which is ensured by representing all quantum opera-
tions by unitary11 matrices.

6 ❦ Chapter 1. Introduction and Preview

1.2.2 Oblivious Transfer and Quantum Money

Wiesner (1969) describes two specific applications of conjugate coding. The first is “a means for
transmitting two messages either but not both of which may be received”, and is termed quantum
oblivious transfer. The other is a gedanken experiment, in which the use of conjugate coding allows
for the creation of banknotes which cannot be duplicated. Both applications use photons as infor-
mation carriers; the polarisation of the photons varies according to the data being transmitted. A
review of the nature of polarised photons is therefore in order.

Polarised Photons

Photons are examples of elementary quantum systems; any beam of light consists of a multitude
of photons. In order to represent bits using photons, their polarisation is varied. For any given
electromagnetic wave, the polarisation is the angle, with respect to the horizontal, of the plane in
which that wave oscillates. A photon is perceived as an electromagnetic wave, and its polarisation
can be fixed by passing it through special apparatus, such as a Polaroid filter or a calcite crystal.

A polarising apparatus has an orientation; this determines the axis of polarisation of the light
beam emanating from it. It is even possible to isolate individual photons from the light beam.

According to the uncertainty principle of quantum mechanics (see Chapter 2), measurements
on any single photon cannot reveal more than one bit of information regarding its polarisation.
Consider a light beam polarised with axis ϑ. If this beam is sent into a filter oriented at a different
angle ϕ, the photons will behave in a dichotomous and probabilistic fashion. With probability
cos2(ϑ� ϕ), the filter will allow a photon to pass through it, or absorb it with probability sin2(ϑ�
ϕ). Passing the photon through the filter demonstrates the destructive nature of measurement; all
photons that emerge from the filter are affected by it and are all polarised at angle ϕ. The physics
of the situation are explained in Figure 1.2.

To make this absolutely clear, we quote Bennett and Brassard (1984):

“ ... photons behave deterministically only when the two axes [of the photons and the polar-

ising filter] are parallel (certain transmission) or perpendicular (certain absorption). If the two

axes are not perpendicular, so that some photons are transmitted, one might hope to learn ad-

ditional information about α [corresponding to ϑ above] by measuring the transmitted photons

again with a polariser oriented at some third angle; but this is to no avail, because the trans-

mitted photons, in passing through the β [corresponding to ϕ above] polariser, emerge with

exactly β polarisation, having lost all memory of their previous polarisation α. ”

As discussed above for the case of any two–level quantum system, the state space for a single
polarised photon has two dimensions. Its state can be completely described as a linear combina-
tion of two unit vectors, e.g. j0i = (1, 0) and j1i = (0, 1). Take a photon polarised at angle ϑ to
the horizontal; its state is described by the vector (cos ϑ, sin ϑ). A measurement of this photon
will yield state j0i with probability cos2 ϑ or state j1i with probability sin2 ϑ.

1.2. Conjugate Coding ❦ 7

Figure 1.2 An illustration of the effect of a polarising filter. A beam of light with polarisation ep propagates along the
direction Oz. The electric field for the beam is given by E(r, t) = E0 � ep � ei(kz�ωt), where E0 is a constant. After the beam
passes through the polariser, whose axis is parallel to Ox, only the x-component of polarisation remains. The electric field
becomes

E0(r, t) = E00 � e0p � ei(kz�ωt) = E00 � ex � ei(kz�ωt)

Note that ep = ex cos θ + ey sin θ.

� �
filter
axis

��
��
��
��
��
��
��
��

ex

ey

ep
z

x

y

O
θ

e0p = exOO

//

OO

		��
��
��
��
��
��
��
��

KS

ggOOOO

OO

		��
��
��
��
��

An alternative set of basis vectors for the polarised photon’s state space is

j+i =

 p
2

2
,

p
2

2

!
(1.5a)

j�i =

 p
2

2
,�
p

2
2

!
(1.5b)

in which j+i corresponds to a 45� photon, and j�i to a 135� photon. By convention, the set of
vectors fj0i , j1ig is referred to as the rectilinear basis, while fj+i , j�ig is referred to as the diagonal
basis:

Notation 1.1 The rectilinear basis, consisting of the vectors j0i and j1i, is denoted by �.

Notation 1.2 The diagonal basis, consisting of the vectors j+i and j�i, is denoted by �.

Notation 1.3 A qubit is expressed here either using the rectilinear basis, as in α j0i+ β j1i, or using the
diagonal basis, as in α j+i+ β j�i.

Proposition 1.1 The rectilinear and diagonal bases are conjugate.
Proof. The vectors in the two bases are mutually orthogonal; hence, measuring a state in the rectilinear
basis with respect to the diagonal basis will yield an uncertain result (and vice versa); this is the distinctive
property of conjugate bases.

8 ❦ Chapter 1. Introduction and Preview

“Quantum Multiplexing”, or Quantum Oblivious Transfer

Oblivious transfer, a term due to Rabin12, is a procedure that makes it possible to multiplex two
messages in a way that allows only one of them to be retrieved. Wiesner formulated such a
procedure (“quantum multiplexing”) long before Rabin coined the term for it, and he used the
properties of polarised photons.

In this scheme, the transmitter emits a single, polarised burst of light onto an optical fibre for
each bit in the two messages. Before emitting each burst, one of the two messages is chosen at
random. If the first message is chosen, the i-th burst is fixed in the rectilinear polarisation basis.
If the second message is chosen, the i-th burst is fixed in the diagonal polarisation basis.

The receiver uses a filter to measure the photons received. To obtain the first message, the
filter is oriented horizontally or vertically (rectilinear case). To receive the second message, the
orientation is shifted by 45� (diagonal case).

It is clear that, if the orientation of the receiving filter does not match the polarisation axis of a
particular photon, the result of the measurement will be random. Therefore only one of the two
transmitted messages can be correctly received with 100% accuracy.

“Quantum Money”

Using the principle of conjugate coding, it is possible to envisage banknotes which are impossible
to counterfeit. It must be noted, however, that “quantum money” is not currently practicable, and
thus has to be regarded a gedanken experiment.

Upon a quantum banknote are affixed several two–level systems. Rather than polarised pho-
tons, spin– 1

2 particles are used. A spin of }2 represents ‘1’, and a spin of � }
2 represents ‘0’.

If a counterfeiter tries, for instance, to measure the particles on the banknote with basis �,
although some measurements will yield a valid result, those particles encoded using � will be
perturbed and the result will be random. Not only will the counterfeiter produce an invalid
banknote, but the very attempt will eventually be detected at the mint, which is the only place the
original bases used are known.

1.3 Quantum Key Distribution

We have seen that the use of quantum–mechanical phenomena enables curious means of data
transmission without rival in classical communication. What remains to be shown is how con-
jugate coding can be applied in the context of the wire–tap channel. We will see how conjugate
coding can prevent an eavesdropper, with arbitrarily high probability, from successfully inter-
cepting a transmission.

To perform conjugate coding, the sender and receiver of a message must be linked through a
quantum channel, that is, a channel designed to carry intact quantum particles, such as photons.
Consider an altered version of the wire–tap system of Figure 1.1, with C1 and C2 replaced by
quantum channels. Such a system will allow the sender to encode messages using quantum
particles, while the eavesdropper will be capable only of destructively intercepting particles and
transmitting substitutes to the receiver. The eavesdropper will not be able to re–transmit, or
replicate the particles received, since unknown quantum states cannot be copied.

1.3. Quantum Key Distribution ❦ 9

Suppose the sender wishes to transmit the sequence ‘101’. Each bit in this message is coded
using one of the conjugate bases � or � chosen at random. In order to correctly decode the
received particles, the basis used for encoding will be needed for measurement. Where incorrect
bases are chosen, the result will be random.

Example 1.1 Assume that the state jχi = j0i is transmitted:

❧ If the receiver chooses to decode jχi using the � basis, the result of her measurement will always be
j0i, which will be correctly interpreted as a ‘0’. After measurement, the state remains unchanged.

❧ If the receiver chooses to decode jχi using the� basis, the result of her measurement will be either j+i
or j�i with equal probability; a j+i would be interpreted as a ‘0’ while a j�i would be interpreted
as a ‘1’. After measurement, the state changes permanently to j+i or j�i respectively.

The receiver of the message sequence will not know the basis originally chosen to encode
each bit, and neither will the eavesdropper. They are both bound to choose incorrect bases for
measurement several times. As illustrated in the example above, the measurement not only is
likely to yield an incorrect result, but will also change the state of each particle permanently13.
What the eavesdropper transmits to the receiver is therefore a different state from that originally
transmitted.

Example 1.2 To transmit the sequence ‘101’ the sender decides to use the bases �,�,� (in that order)
to encode each bit to a particle. This means that the particles transmitted have the states j�i , j0i , j1i
respectively.

1. The eavesdropper does not know the original bases used for encoding, so she chooses at random the
bases�,�,� to decode j�i , j0i , j1i. Since the incorrect basis was chosen for the first two particles,
the result of measuring them gives a random result, e.g. the state j0i instead of j�i for the first
particle, and the state j+i instead of j0i for the second particle. The last particle is measured correctly
as a j1i state, and the eavesdropper concludes that the sequence transmitted was ‘001’. She transmits
the sequence of states j0i , j+i , j1i to the receiver.

2. The receiver picks the bases �,�,� to decode the sequence j0i , j+i , j1i. The results of the first and
last measurements are random, say j�i and j+i, and the receiver concludes from her measurements
that the sequence transmitted was ‘100’.

This example demonstrates how, using conjugate coding, a short bit sequence can be trans-
mitted; although there is an error in the final value received, the eavesdropper certainly has not
managed to obtain the original sequence, and that is precisely the achievement of this technique.
The errors that result from incorrect choices made by the receiver can be removed through sub-
sequent agreement with the sender; this is the process of reconciliation and will be discussed in
Chapter 2.

10 ❦ Chapter 1. Introduction and Preview

1.3.1 Cryptographic Keys

The use of conjugate coding for cryptographic purposes was proposed by Bennett and Brassard
(1984) and Wiedemann (1987). The most important application is key distribution. To justify this
application, a few words with regard to cryptographic keys are now in order.

In a secret–key cryptosystem, a given message m is encrypted using some algorithm E and a
value k, the key, which is known only to the sender and receiver. The sender encrypts m using E
to form a cryptogram c, which is subsequently transmitted:

c = E(m, k) (1.6)

To recover m from c, a knowledge of k is needed. Only then can the decryption algorithm D be
applied:

m = D(c, k) (1.7)

Note that the key k needs to be established before transmission. If the algorithms E and D are
publicly known, the eavesdropper’s only task is to obtain the value of k. Generally speaking, the
key may be obtained in one of two ways: by attacking sender and receiver directly when it is first
established, or by consistently monitoring the cryptogram c to detect patterns or hints suggesting
the value of k. The latter of these two approaches is known as cryptanalysis.

The problem that needs to be addressed in any secret–key cryptosystem is how to establish the
common key k secretly in the first place. This is the so–called key distribution problem. In an effort
to resolve the key distribution problem, Diffie and Hellman14 proposed the concept of public–
key cryptography, where sender and receiver do not need to use a common key. In a public–key
cryptosystem, each user possesses a pair of keys (SK, PK) such that f (SK) = PK, where f is a
one–way function15. The secret key SK of a particular user is never disclosed and is unique. The
public key PK is, however, public knowledge.

In order for some user A to send an encrypted message m to user B she must use B’s public
key:

c = E(m, PKB) (1.8)

Only user B can successfully decrypt the cryptogram c, by using her private key SKB:

m = D(c, SKB) (1.9)

In this case, an eavesdropper needs to obtain the secret key SKB, which is only possible by invert-
ing the function f :

SKB = f�1(PKB) (1.10)

The function f is always carefully chosen, so that its inversion is a computationally intractable
task.

Since the potential of quantum computers was discovered, the security of public–key cryp-

1.4. Other Quantum Protocols ❦ 11

tosystems has become debatable. In particular, in popular systems such as RSA, f is a function
that multiplies two prime numbers; if Shor’s algorithm for efficient quantum factorisation on a
quantum computer is implemented, this defense is very vulnerable.

1.3.2 The One-Time Pad

Thus far it has been shown:

❧ that quantum phenomena, as employed in conjugate coding, can be used to establish arbi-
trarily secure bit sequences between two parties;

❧ that secret–key cryptosystems generally suffer from the need to establish keys prior to trans-
mission;

❧ and that public–key cryptosystems alleviate the need for key distribution, but rely on the
intractability of certain computational problems, which makes them vulnerable in the face
of quantum computers.

It follows that conjugate coding could likely be used to solve the problem of key distribution.
Given that the keys that result from this process are highly secure, the only remaining issue is to
select a perfect secret–key cryptosystem that uses them.

A cryptosystem is perfect in the information–theoretic sense if, intercepting any cryptogram
gives no information whatsoever about the message it encodes. The Vernam cipher, or one–time
pad, is the classic example of a perfect cryptosystem. In this system, the key used to encode a
particular message is at least as long as the message itself, and a different key among these is
used for each transmission. Since a different key is used every time, no gain of information can
ever be made by eavesdropping on transmissions.

Combined with a perfect cryptosystem such as the one–time pad, quantum key distribution
can be used in a communication system with perfect secrecy.

1.4 Other Quantum Protocols

Gilles Brassard and Charles Bennett extended the principles behind quantum key distribution
and quantum oblivious transfer to other cryptographic applications16. In particular, they pro-
posed protocols for quantum bit commitment and quantum coin–flipping, to be discussed next. We
will turn our attention to these now, and we will also see how the quantum phenomenon of en-
tanglement can be employed to construct useful protocols.

1.4.1 Bit Commitment and Coin Flipping

Commitment as a cryptographic term refers to proof that a certain party possesses a particular
datum. Although the datum is known only to that party, with commitment she can definitively
prove to any other party that she is using that datum and cannot alter it. A commitment protocol
thus allows party A to commit to a prediction (i.e. a series of bits) without revealing her prediction
to B until some time in the future17.

12 ❦ Chapter 1. Introduction and Preview

Several commitment protocols exist18 but can be subverted using subtle attacks. The quan-
tum bit commitment protocol was originally shown to be provably secure19. Unfortunately, it was
eventually proved that unconditionally secure quantum bit commitment is impossible20.

Coin flipping is another cryptographic problem akin to bit commitment. Using a coin flipping
protocol, two parties can flip a coin at a distance and agree on the outcome. However, the outcome
of the flip is not determined individually by one of the two parties, since it is assumed they do
not trust each other. A coin flipping protocol allows them to agree on the outcome nevertheless.

In coin flipping, no third party is required to determine who the winner and loser are. There
has to be a 50% chance of winning a coin flip for both parties, and any attempt to bias the outcome
should be immediately detectable.

The traditional solutions to both problems of bit commitment and coin flipping rely on un-
proven assumptions about computational complexity for their security. Just as cryptosystems
that rely on the difficulty of factoring prime numbers are vulnerable against quantum computers,
it is likely that existing schemes for the above problems will become defenseless with an increase
in computational power. This is exactly why quantum protocols offer an elegant alternative; their
security is only really related to our understanding of the physical world.

1.4.2 Entanglement-Based Protocols

So far, only superposition and the nature of measurement have been presented as distinctive
aspects of quantum theory. There is one more feature of the subatomic world which allows the
development of effective communication schemes: quantum entanglement.

A system of particles may exist in a certain state, which cannot be broken down and expressed
in terms of the individual particles’ states; this state, which describes the totality of the particles,
is an entangled state. An example of such a state is

��Ψ��[12] =
1p
2

�
j0i[1] j1i[2] � j1i[1] j0i[2]

�
(1.11)

Notation 1.4 The tensor product of two state vectors jai and jbi is written jai
 jbi or jai jbi. This is
frequently shortened to jabi in the literature. More information about the tensor product of quantum states
can be found in Rieffel and Polak (2000); Nielsen and Chuang (2000) and in section 2.1.3.

Equation (1.11) describes the state of a system of two particles (labelled [1] and [2] respec-
tively). The system is in a superposition of the state j0i[1] j1i[2] (in which particle 1 is state j0i
and particle 2 in state j1i) and the state j1i[1] j0i[2] (in which particle 1 is state j1i and particle
2 in state j0i). The state cannot be decomposed into a product of individual states of the form
(a j0i+ b j1i), i.e.

@a1, b1, a2, b2 :
��Ψ��[12] = (a1 j0i[1] + b1 j1i[1]) (a2 j0i[2] + b2 j1i[2]) (1.12)

The existence of entangled states such as (1.11) led Einstein and some of his contemporaries
to doubt the validity and completeness of quantum theory. The primary reason for this is that
entangled quantum states exhibit unusual properties when measured. Two particles that are
entangled are correlated in such a way that, if one of the two is measured, the other is affected. By

1.5. Protocol Specification and Verification ❦ 13

measuring one particle, the result of measuring the other at any point in the future is known; that
is, the second measurement is always deterministic. What is more, this effect occurs independently
of the physical distance between the two particles; it is also referred to as the phenomenon of
quantum non–locality for this reason.

Example 1.3 If particle 1 in the system described by (1.11) is measured, and the result is j0i, then mea-
suring particle 2 subsequently will always yield j1i. This is indicated by the order of the two states in the
expression j0i[1] j1i[2]. Similarly, if particle 1 is measured and yields j1i, measuring particle 2 afterwards
will yield j0i.

A rewarding discussion of entanglement, with references to the original works on the subject,
is to be found in Bub (2002). Interestingly, entanglement has been used as the foundation for
several theoretical protocols. Of these, dense coding (section 2.4) and quantum teleportation (section
2.5) deserve the greatest mention.

1.5 Protocol Specification and Verification

It is by now clear that quantum–mechanical effects may be used effectively to devise powerful
communication protocols. It must be borne in mind, however, that these schemes have been,
to date, largely the result of research in theoretical physics. This is no surprise, of course, since
a thorough grounding in physics is necessary to grasp and apply the phenomena of quantum
mechanics to practical situations.

General communication protocols, and especially security protocols, have always been under
the scrutiny of computer scientists and numerous techniques for their design and testing have
been developed. Process calculi, such as ccs

21, csp
22 and acp

23, have all been used for methodical
specification of protocols, and for the construction of formal proofs. Automated verification tools
and programming languages have been proposed for precisely these tasks. The two principal
variants of automated verification, model checking and theorem proving, are frequently targeted
at protocols and have both been used in the past to detect faults and subtle bugs in them. As
mentioned in the Preface, the fdr model checker allowed Gavin Lowe to uncover a flaw in the
Needham–Schroeder security protocol; the spin model checker, intended for testing distributed
systems software in general, started life as a tool for checking and correcting the behaviour of
telecommunications protocols and telephone switches24.

So why not consider using formal methods and validation tools to investigate quantum proto-
cols, such as those presented previously? Indeed, this is the rationale for the current thesis. The use of
modelling software and specification formalisms is likely to produce elegant and unambiguous
protocol definitions; it will allow for automated construction of useful proofs; and it will pro-
vide potential system implementors with a solid theoretical foundation and a platform for testing
design ideas.

14 ❦ Chapter 1. Introduction and Preview

1.6 Scope and Contents of the Following Chapters

The emphasis in the remainder of this thesis will be put on the use of model checking to investi-
gate the properties of quantum protocols, e.g. the security of quantum key distribution. Proofs
of security already exist, but to understand them one needs to have considerable background in
a variety of fields. Using software tools instead is a practical alternative. We will pay attention
to techniques for formal specification, including process calculi and quantum programming lan-
guages. An imperative specification language devised by the author, qSpec, will be described; its
syntax will be given by way of example, and we will present an operational model for programs
in this language.

Chapter 2 describes a variety of quantum protocols, expanding the material discussed here.
We will review notation and ideas from quantum theory, thus clarifying further the symbols used
in the current chapter; we will discuss the concept of security from an information–theoretic point
of view; and quantum key distribution protocols BB84, B92 and E91 will be described carefully.
Protocols for dense coding and quantum teleportation will also be discussed.

Chapter 3 is concerned with the theory and practice of model checking, which is the method
with which we propose to analyse quantum protocols. The function and architecture of a model
checker will be reviewed, with particular attention to the syntax and semantics of temporal logic.
We will show how we can formally specify the measurement of entangled quantum particles
using logic, probability, and the prism software tool.

The principal outcome of this work is the use of the prism and spin model checkers as vehicles
for verifying the security of quantum key distribution; this is the subject matter of Chapter 4,
where it is shown that the probability of a successful eavesdrop diminishes exponentially with
the number of transmitted bits.

Alternative approaches to formal specification and verification of quantum protocols are ex-
amined in the fifth chapter. We discuss quantum process algebras, including cqp and QPAlg; the
logic of knowledge and time for quantum systems proposed by Meyden and Patra (2003); soft-
ware such as QCSim and probUSM, and also the probabilistic specification language probmela

25.
In Chapter 5 all these formalisms are discussed, and qSpec is presented in detail; the final

chapter points to directions for future work.

2
A Survey of Quantum Protocols and Security Criteria

The discussion now turns to the protocols used in various quantum communication schemes
and, in particular, in quantum cryptography. There are four main classes of quantum proto-

cols with purely cryptographic goals, namely:

❧ key distribution

This class of protocols includes BB841, B922, and Ekert’s protocol3.

❧ establishing desired levels of privacy

This class includes specialised protocols which do not necessarily employ quantum effects,
such as the schemes for secret–key reconciliation4 and privacy amplification5.

❧ commitment

There are several protocols for quantum bit commitment6, but it has been proved that they
can never be unconditionally secure7.

❧ oblivious transfer

To this category belong variations of Wiesner’s protocol for quantum oblivious transfer8.

There are two more kinds of quantum protocol that are of interest, but these are not intended for
cryptographic purposes:

❧ dense coding

A dense coding protocol9 allows a quantum channel to be used to efficiently transmit clas-
sical bits.

❧ teleportation

Teleportation protocols10 allow a quantum state to be exchanged using only a classical chan-
nel.

A proper presentation of all these protocols and the issues associated with them necessitates a
basic understanding of the formalism of quantum mechanics; section 2.1 is a summary of impor-
tant results and notation from this area. The exposition given here is based on Cohen-Tannoudji

15

16 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

et al. (1977), which is the most comprehensive reference available on the subject. Since the fore-
most concern in this thesis is security, a thorough discussion of this concept and Shannon’s classic
formalisation is given in section 2.2. Following these preliminaries, the protocols for key distri-
bution and establishing desired levels of privacy are described. We will also have a brief look at
dense coding and teleportation.

2.1 Elements of Quantum Theory and its Mathematical Formalisation

Quantum mechanics is that part of Physics which deals with phenomena at the atomic scale; its
forefathers include such major figures as Albert Einstein, Erwin Schrödinger, and Paul Dirac. It
was in the 20th century that these, and many other respected scientists, came to terms with the
world of the atom, and how drastically it differs from everyday experience.

The cornerstone of quantum theory is the realisation that objects on an atomic scale behave in
a random fashion, and not deterministically as classical physics would lead us to believe. Fur-
thermore, the phenomena at this level involve discrete, or quantised changes, as opposed to the
familiar continuous quantities in classical physics. Another important result in quantum theory,
known as the Heisenberg uncertainty principle, places bounds on the amount of information that
can ever be extracted through observation or measurement. That is, the amount of accuracy in
the measurement of any physical quantity is strictly limited.

Quantum theory challenges the very notion of a particle. It turns out that quantum “objects”
can exhibit the key property of a particle, namely locality in space, as well as the interference
phenomena of waves. This leads one naturally to conceive of a concise, mathematical description
of a quantum system, independently of its characterisation as a “wave” or a “particle”; this is
termed the quantum state.

A quantum state is a vector which belongs to an abstract vector space. From this vector one
can extract everything that is “knowable” about the system it represents (see also section 1.2.1).
The vector space is referred to as the state space of the system, while the vectors themselves are
called “kets”. A ket is written as a label enclosed in j�i parentheses. Each ket is a complex–valued
vector, and the state space has the structure of a Hilbert space.

The counterpart to a ket is a “bra”, and all bras form the dual of the state space. When a bra
hϕj and a ket jψi are multiplied, they form the scalar product (jϕi , jψi):

hϕ jψi = (jϕi , jψi) (2.1)

The origin of the terms “bra” and “ket” is now apparent, since these are the two elements of a
“bracket” hϕ jψi. Note that a bra is a linear functional: it maps any ket to a complex number.

To summarise:

❧ a quantum state is described by an abstract vector,or ket, of the form jψi;

❧ all the possible states of a quantum system belong to a Hilbert space H ;

❧ and to each ket jψi corresponds a bra hϕj, with the product of any ket and bra being a
complex number.

2.1. Elements of Quantum Theory ❦ 17

The following definition is of particular utility in some quantum protocols, as will be seen in
later sections.

Definition 2.1 Two states jϕi and jψi are said to be orthogonal if hϕ jψi = 0.

2.1.1 Bases and Representations

Thus far, the mathematical formalism of quantum mechanics has been presented as a calculus
in an abstract vector space. However, quantum states can be expressed in concrete terms; this
involves choosing a suitable representation.

The state space of a quantum system, just as any vector space, is spanned by a certain number
of basis vectors. This means that any quantum state can be expressed as a linear combination of
these:

jψi = ∑
i

ci juii (2.2)

Expression (2.2) is the representation of state jψi in the basis fjuiig. A particular basis fjuiig is
orthonormal if all basis vectors are orthogonal to each other:

ui j uj
�
= δij (2.3)

where δij has value 1 when i = j and 0 otherwise.

With the introduction of a basis, every quantum state of a particular system can be expressed
concretely; it suffices to obtain the coefficients ci in equation (2.2), which can be written, for each
i,

ci = hui jψi (2.4)

A ket is written conventionally as a column vector containing the coefficients ci:0BBBB@
c1

c2
...

cn

1CCCCA
while a bra is written as a row vector, so that the product of a bra and a ket is a number:

hϕ jψi =
�

d1 d2 � � � dn

�
�

0BBBB@
c1

c2
...

cn

1CCCCA = d1c1 + d2c2 + � � �+ dncn (2.5)

18 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

Finally, an operator is concretely expressed as a matrix, whose elements Aij satisfy:

Aij =

ui j A j uj

�
(2.6)

Example 2.1 Consider a two–state system such as a hydrogen atom; its state belongs to a 2–dimensional
Hilbert space H2, with basis states ju1i (the atom’s ground state) and ju2i (the atom’s excited state). In
general, the overall state of the atom when unobserved is

jψi = ∑
i

ci juii = c1 ju1i+ c2 ju2i

Since ju1i and ju2i are basis vectors, to make the basis orthonormal the following must hold:

hu1 j u2i = 0

hu2 j u1i = 0

The representations of basis vectors ju1i and ju2i are

ju1i =
�

1
0

�
and ju2i =

�
0
1

�
The overall state of the atom can now be written

jψi = c1

�
1
0

�
+ c2

�
0
1

�
=

�
c1

c2

�

2.1.2 The Nature of Quantum Measurement

The only means of interacting with the atomic world is through direct observation using appro-
priate equipment. Observation, or measurement, is a process which generally alters any quantum
state. The remarkable aspect of quantum measurement is precisely this: it is impossible to cre-
ate a perfectly selective or discriminatory device for obtaining accurate results about a quantum
system. The very act of measurement causes an irreversible disturbance, and this means that the
exact quantum state of a system can never be obtained11.

Measurement of any quantum system can only ever give one of a set of privileged results,
namely those associated with basis vectors of the state space. Thus the results of any measurement
are limited, or quantised, to certain eigenvalues.

With each possible measurement result is associated a definite system state, called an eigen-
state. Each eigenstate corresponds to a basis vector of the state space.

Also, after measurement is performed, the quantum state changes permanently. If the result
of a measurement is basis vector ui, then the quantum state changes to ui permanently thereafter.
Any subsequent measurement with the same basis will always yield ui.

More interestingly, the outcome of a measurement is subject to the laws of probability. A

2.1. Elements of Quantum Theory ❦ 19

quantum state

jψi = α ju1i+ β ju2i (2.7)

will yield one of the eigenstates ju1i or ju2iwith respective probability jαj2 or jβj2. For this reason,
in any linear expansion

jψi = ∑
i

ci juii (2.8)

the ci are referred to as probability amplitudes.

Example 2.2 Consider a system with state

jψi =
p

0.3 � j0i+
p

0.7 � j1i

Using the notation introduced in Chapter 1, � is the basis fj0i , j1ig. A measurement of jψi using

� will yield the new state jψ0i = j0i with probability
���p0.3

���2 = 0.3 or the new state jψ0i = j1i with

probability
���p0.7

���2 = 0.7. If the basis � = fj�i , j+ig is used instead, however, the result will be either
j�i or j+i at random, with different respective probabilities.

2.1.3 The State of a Composite Quantum System

Having understood how a single quantum system may be described by means of a state vector,
the reader is prepared to consider how to describe aggregates of such systems. In particular, if S1

and S2 are two isolated physical systems with state spaces E[1] and E[2], how can one describe the
combined system S1 + S2? This is the final aspect of the formalism of quantum mechanics that
needs to be dealt with here.

Given two quantum systems whose state spaces are known, the state space that is formed
when the two are combined is called the tensor product space. If E[1] and E[2] denote the state
spaces of the first and second system respectively, the tensor product space is written

E = E [1]
 E[2] (2.9)

and describes the totality of states in which the two systems may be found together. The tensor
product space E consists of vectors which are linear combinations of products of the form

jϕi[1]
 jχi[2] (2.10)

where jϕi[1] denotes the individual state of system S1, and jχi[2] denotes the individual state of
system S2. Thus, if the composite system S1+ S2 is found to be in state (2.10), then its components
will be in states jϕi and jχi respectively.

A vector of the form (2.10) is the tensor product of vectors jϕi[1] 2 E[1] and jχi[2] 2 E[2] and
possesses the following properties:

20 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

i. it is linear with respect to multiplication by complex constants, e.g.h
λ � jϕi[1]

i

 jχi[2] = λ �

h
jϕi[1]
 jχi[2]

i
ii. it is distributive with respect to vector addition, e.g.

jϕi[1]

h
jχi[2] +

��χ0�[2]i = jϕi[1]
 jχi[2] + jϕi[1]
 ��χ0�[2]
iii. If juii[1] is a basis of the state space E[1] and jvmi[2] is a basis of E[2], then the set of vectorsn

juii[1]
 jvmi[2]
o

is a basis of E .

The vectors in E take two forms; on one hand, there are vectors which can be expanded into a
product of vectors of E[1] and E[2]. Thus, if

jϕi[1] = a1 � ju1i+ a2 � ju2i
and jχi[2] = b1 � jv1i+ b2 � jv2i

then an example of a state which is decomposable is

jψi[12] = a1 � b1 � ju1v1i+ a1 � b2 � ju1v2i+ a2 � b1 � ju2v1i+ a2 � b2 � ju2v2i

= (a1 � ju1i+ a2 � ju2i)
 (b1 � jv1i+ b2 � jv2i)
= jϕi[1]
 jχi[2]

On the other hand, there exist state vectors which cannot be expressed as products of vectors
in E[1] with vectors in E[2]. These are called entangled states:��ψ0�[12] = c1 � ju1v1i+ c2 � ju2v2i = c1 � ju1i[1]
 jv1i[2] + c2 � ju2i[1]
 jv2i[2] (2.11)

Example 2.3 Expression (2.11) describes the so–called EPR state (due to Einstein, Podolsky and Rosen)
when c1 = c2 =

1p
2

and j0i replaces ju1i and jv1i, and j1i replaces ju2i and jv2i). It is thus written as:

��ψ0�[12] = c1 � j00i+ c2 � j11i = c1 � j0i[1]
 j0i[2] + c2 � j1i[1]
 j1i[2] (2.12)

It is indeed entangled, since there do not exist any constant numbers a1, a2, b1, b2 such that��ψ0�[12] = (a1 � j0i+ a2 � j1i)
 (b1 � j0i+ b2 � j1i)

A product state such as (2.10) is considered to represent the simple juxtaposition of two sys-
tems; the results of the two types of possible measurements, bearing either on one system or on
the other, correspond to independent random variables. A state which is not a tensor product de-
scribes a situation in which there are correlations between the systems involved. A measurement

2.2. Perfect Secrecy and Security ❦ 21

on part of such a system will affect both component states; the result can no longer be expressed
as a change in either one of the two component states.

Example 2.4 Consider the possible results of measuring the EPR state (2.11). The observer tries to observe
system S1 first, then system S2. From the definition of the state��ψ0�[12] = c1 � j00i+ c2 � j11i = c1 � j0i[1]
 j0i[2] + c2 � j1i[1]
 j1i[2]

it can be seen that the result of the measurement will be j0i[1]
 j0i[2] with probability c2
1, or j1i[1]
 j1i[2]

with probability c2
2. The first system will either be found to be in state j0i or in state j1i. If it is found in

state j0i, then subsequent measurement of the second system will yield j0i with certainty. If it is found in
state j1i, then subsequent measurement of the second system will yield j1i with certainty.

2.2 Perfect Secrecy and Security

Next, a handful of concepts from Shannon’s theory of information will be presented. Of interest
to us is the application of information theory to cryptographic systems12. Formal definitions of
the notion of security will also be given.

As explained at length in Chapter 1, the objective of a cryptographic protocol is to code mes-
sages in such a manner as to prevent an enemy, such as an eavesdropper, from learning their
content. The situation is described by two sets of probabilities; the so–called a priori probabil-
ities quantify the likelihood of a particular message and key being chosen in the first instance;
they represent the enemy’s a priori knowledge. When a cryptogram is intercepted, the enemy can
compute a posteriori probabilities of key and message combinations.

The set of possible messages is termed the message space fmig. The probability that message
mi is chosen for transmission is written P(M) = PrfM = mig, where M is a random variable
over the message space. One can similarly define the probability that a key ki is chosen as P(K) =
PrfK = kig, and the probability P(E) = PrfE = eig that cryptogram ei is intercepted. Keys are
chosen from a key space fkig and cryptograms from a space feig, while K and E are random
variables over these spaces.

The a priori probability P(E jM) = PrfE = ei jM = mig determines with what likelihood the
cryptogram ei is produced when message mi is to be transmitted. On the other hand, when ei is
intercepted by an enemy, she can compute with what probability mi was the chosen message; this
latter is the a posteriori probability of message mi “given cryptogram ei” and is written P(M j E) =
PrfM = mi j E = eig.

Note that the enemy is assumed to know the cryptographic mechanism being used by the
sender13, as well as the probabilities P(K) of choosing various keys. The a priori and a posteriori
probabilities are related quite simply through Bayes’ theorem:

P(M j E) = P(M) � P(E jM)
P(E)

(2.13)

Shannon also developed the theoretical notion of perfect secrecy:

Definition 2.2 A cryptosystem is said to have perfect secrecy if, for all cryptograms E, the a posteriori

22 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

probabilities are equal to the a priori probabilities, whatever their value:

P(E jM) = P(E)

and conversely P(M j E) = P(M)

Perfect secrecy is achieved only in a system where intercepting a cryptogram gives absolutely no
information about the content of the message it represents.

The most basic concept in information theory is entropy, which quantifies the amount of uncer-
tainty associated with any datum or, put otherwise, the amount of information generated when a
datum is first produced. In a cryptographic system there is uncertainty associated with the choice
of message,

H(M) = �∑ P(M) log P(M) (2.14)

as well as uncertainty associated with the choice of key:

H(K) = �∑ P(K) log P(K) (2.15)

When the concept of entropy is applied within the context of a cryptosystem, a useful measure
of the system’s secrecy results; this is termed the equivocation, given by

H(K j E) = ∑
E,K

P(E, K) � log P(K j E) for keys (2.16)

H(M j E) = ∑
E,M

P(E, M) � log P(M j E) for messages (2.17)

where P(E, K) is the probability that key K and cryptogram E occur together; P(E, M) is similarly
defined.

When considering any cryptosystem, one associates with it a formal level of security. The
strongest possible definition of security is based on Shannon’s ideas:

Definition 2.3 (Unconditional Security) A cryptosystem with messages M, keys K, and cryptograms
E is perfectly or unconditionally secure if an enemy with unlimited computational power can learn
nothing about a message mi given the matching cryptogram ei. This requires that:

1. the key used should be at least as long as the message, i.e. jkij > jmij.

2. the same key is never used twice, i.e. every key is used with equal probability and, for all messages
mi and cryptograms ei, there is a unique key ki that matches mi to ei.

A cryptosystem rarely achieves perfect security; the most well–known example of a perfectly
secure system is the one–time pad, described previously in section 1.3.2. There exist weaker
definitions of security, which ascribe limited computational power to the enemy14:

Definition 2.4 (Computational Security) A cryptosystem is computationally secure if the best
known algorithm for breaking it requires an unreasonably large amount of computational resources.

2.3. Quantum Key Distribution in Detail ❦ 23

Definition 2.5 (Provable Security) A cryptosystem is termed provably secure if breaking it reduces
to solving some well–studied hard computational problem.

We will now proceed to discuss the three main protocols that implement quantum key distri-
bution.

2.3 Quantum Key Distribution in Detail

The most important and useful quantum protocols for cryptography deal with the problem of key
distribution, discussed previously in section 1.3.2. Although there exist classical cryptographic
schemes which are unconditionally secure, classical key distribution with unconditional security
is impossible15.

In classical key distribution, the common key is first established by a single user, and then
distributed (hence the term) to the other users. In quantum key distribution systems the common
key is generated through the collaboration of all the users involved. For this reason, quantum key
distribution is a misnomer16; however, it is the preferred term in most of the relevant literature for
historical reasons.

Any key distribution protocol generally has to ensure that the key produced is truly random.
This implies that an enemy cannot predict its value prior to the protocol, and can only attempt to
monitor the legitimate users’ communications. Clearly, a key distribution protocol must prevent
an enemy eavesdropper from learning any significant part of the key, while also giving legiti-
mate users certainty that they indeed share a common key. Any discrepancy between the users’
individual keys makes subsequent communication problematic, if not impossible.

Quantum key distribution protocols require quantum channels which, unlike their classical
counterparts, cannot be passively monitored. Although, for example, a telephone line can be
wire–tapped without this being noticed, any gain of information from a quantum channel neces-
sarily produces a disturbance.

There are three implementations of quantum key distribution, each of which makes use of a
different feature of quantum theory:

❧ The original BB84 protocol17, which uses two conjugate bases (see section 1.2) for encoding
bits into sequences of polarised photons;

❧ The B92 protocol18, which is a simplification of BB84; it uses only two nonorthogonal quan-
tum states to encode information;

❧ The Ekert or E91 protocol19, which uses entangled pairs of particles to establish a common
bit sequence and a so–called Bell inequality to detect eavesdropping.

Common to these variations is the underlying conceptual procedure, which involves four ba-
sic steps20, shown in Figure 2.3.

To implement this procedure, the following quantum–mechanical features are used:

❧ An unknown quantum state cannot be cloned;

❧ Non–orthogonal states are generally impossible to distinguish with 100% accuracy;

24 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

Figure 2.1 The conceptual procedure underlying all quantum key distribution protocols.

1. A and B independently generate private, random binary sequences fxmg and fyng respec-
tively, of length m � n.

2. A prepares a sequence of m tokens (which are actual quantum states) representing the bi-
nary sequence fxmg; one kind of token is used to represent a binary 0, and a different kind
is used to represent a binary 1. She sends the tokens to B.

3. B decodes the tokens using the same convention, in order to recover fxmg. He reports to A,
for which i, yi = xi. A subset of these common bits is chosen and forms the tentative key.

4. The tentative key is processed further, in order to correct errors and to eliminate any infor-
mation which may have leaked to an eavesdropper. This results in a final key.

❧ Any measurement of states, with high probability, changes them irreversibly — leading to
a significant and detectable rate of errors.

These features are exploited in quantum key distribution protocols so as to prevent an eavesdrop-
per, with arbitrarily high probability, from learning the key. Any eavesdropping attempt can be
detected due to the disturbance caused by measurement.

The three main protocols, BB84, B92 and E91 are variations on the procedure in Figure 2.3. We
will now discuss each protocol in detail.

2.3.1 The BB84 Protocol

In BB84, for A and B to establish a secret key, A encodes a sequence of bits as a set of polarised
photons. BB84 is a conjugate coding scheme, involving the use of the bases � and �. Each bit is
represented by a photon in one of the following quantum states:

jΨ(0,�)i = j0i (2.18)

jΨ(1,�)i = j1i (2.19)

jΨ(0,�)i = j+i (2.20)

jΨ(1,�)i = j�i (2.21)

Notation 2.1 (Mayers (2001)) The symbol jΨ(d, b)i represents the quantum state representing bit d
when basis b is used. For instance, jΨ(d,�)i denotes a rectilinearly polarised photon that represents bit
d; when d = 0 this is a horizontally polarised photon (polarisation angle 0�), when d = 1 it is a vertically
polarised photon (polarisation angle 90�).

Let’s consider, by way of example, the steps taken by two parties using BB84. Example 2.5
demonstrates the behaviour of the sender of a message, conventionally called Alice; example 2.6
shows the steps taken by the receiver, conventionally named Bob.

Example 2.5 Suppose Alice wishes to transmit the binary sequence fdig where

i 1 2 3 4 5 6 7
di 1 0 1 1 1 0 0

2.3. Quantum Key Distribution in Detail ❦ 25

to Bob using the BB84 coding scheme. For each bit di, she chooses an encoding basis at random. Say for
example, that her choice of basis for the i-th bit is denoted by bi, and the sequence of all these bases is

i 1 2 3 4 5 6 7
bi � � � � � � �

Alice prepares the sequence of states fjΨ(di, bi)ig:

i 1 2 3 4 5 6 7
jΨ(di, bi)i jΨ(1,�)i jΨ(0,�)i jΨ(1,�)i jΨ(1,�)i jΨ(1,�)i jΨ(0,�)i jΨ(0,�)i

Then she transmits, on a noiseless, or perfect quantum channel, to Bob the corresponding sequence of
photons:

i 1 2 3 4 5 6 7
jΨ(di, bi)i j1i j+i j1i j�i j1i j+i j0i

Photon Polarisation Angle 90� 45� 90� 135� 90� 45� 0�

Bob must make appropriate measurements on the photons to recover fdig.

Notation 2.2 We will use the conventional names “Alice” and “Bob” to refer to the sender and the
receiver respectively. “Alice” and the abbreviation A will be used interchangeably. “Bob” and the abbre-
viation B will be used interchangeably.

To summarise: after representing an initial binary sequence using conjugately coded photons,
Alice transmits the photons to Bob through a quantum channel. Then, Bob attempts to reconstruct
the binary sequence by making measurements on the photons.

In order to measure a photon correctly, Bob must use the same basis as that Alice used for
encoding; so, in order to extract bit d from jΨ(d, b)i, Bob must choose b as a decoding basis. If he
chooses the wrong basis, he will obtain a random result (as required by quantum theory).

Example 2.6 Bob receives the sequence

i 1 2 3 4 5 6 7
jΨ(di, bi)i j1i j+i j1i j�i j1i j+i j0i

Photon Polarisation Angle 90� 45� 90� 135� 90� 45� 0�

He does not know what bases bi were used for encoding, so he chooses a basis b0i at random with which to
decode each di. His choices of b0i are, say,

i 1 2 3 4 5 6 7
b0i � � � � � � �

His choices for i = 1, 4, 5 match Alice’s. Thus his measurements on these photons will yield the correct
result, i.e. measuring jΨ(d1, b1)i with b01 = b1 = � will give d1 = 1; Bob will also obtain d4 and d5

26 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

correctly. For the other photons b0i 6= bi so the results of the corresponding measurements will be random;
in some cases the result d0i = di, while in other cases the converse is true. The results of Bob’s measurements
in these cases are, say, d02 = 1� d2 = 1; d03 = d3 = 1; d06 = d6 = 0; d07 = 1� d7 = 1. To summarise,
the sequence that Bob obtains by making measurements are, in this example,

i 1 2 3 4 5 6 7
d0i 1 1 1 1 1 0 1

which differs from fdig in 4 positions. Now, Bob makes a telephone call to Alice and tells her his choices
of b0i ; she then tells Bob, for each i, whether his choice was correct. In those cases where Bob’s choices differ
from Alice’s (i.e. for i = 2, 3, 6 and 7) the corresponding bits are discarded. The final, common key that is
established is k = d1d4d5 = d01d04d05 = 111.

A detailed description of the steps in the BB84 protocol is given in Figure 2.2. We assume that
no eavesdropper is actually present, as we have done in the examples.

When an eavesdropper is present, it is made manifest to users A and B; the eavesdropper
introduces additional errors as a consequence of not knowing which basis to decode with. The
eavesdropper sees each photon jΨ(di, bi)i and tries to measure it with a randomly chosen basis
b̃i. Only if b̃i = bi does the photon remain unchanged. But, just as for Bob, this can only occur
with probability 0.5; with equal probability, there will be cases in which b̃i 6= bi. Whenever the
eavesdropper chooses the wrong basis for a particular photon, that photon will be disturbed
irreversibly. This allows Alice and Bob to detect the eavesdropper’s presence.

If the quantum channel is error–free, i.e. noiseless, then using the same basis to measure a
photon as that used to encode a value on it will yield the correct result with certainty. That is to
say, for a noiseless channel:

(b0i = bi)) (d0i = di) (2.22)

If, for some i, the implication (2.22) does not hold, this means that an eavesdropper has disturbed
the quantum state jΨ(di, bi)i. But, to reiterate, this is only true for noiseless channels.

Example 2.7 To make this clear, consider again the transmissions in Examples 2.5 and 2.6. Say that, when
jΨ(d1, b1)i = jΨ(1,�)i = j1i is transmitted, the eavesdropper attempts to measure it using basis�. The
eavesdropper will obtain one of the results j+i and j�i; after this, the photon’s state changes permanently
to j+i or j�i respectively. Thus, jΨ(1,�)i is replaced by jΨ0(x,�)i where x is 0 or 1, at random. Now,
what Bob receives is jΨ(d1, b1)i = jΨ0(x,�)i. In the example, Bob’s choice of basis for i = 1 is b01 = �.
Using this basis for measurement, he will obtain a random result. When he discloses to Alice that the
rectilinear basis was used, she will inform him that b01 = b1; however, it will be found that d01 6= d1. This
error is due to the disturbance caused by the eavesdropper.

On a realistic, noisy quantum channel, photons are likely to be disturbed by the channel itself,
independently of whether an eavesdropper is present or not. So there will be bit positions i for
which, although b0i = bi, we will have d0i 6= di. These errors must be detected, so that the two
users do eventually obtain a common bit sequence. Therefore, an additional step, a test for errors,
is normally included in BB84; it is performed in 2(b) (see Figure 2.2).

2.3. Quantum Key Distribution in Detail ❦ 27

Figure 2.2 The BB84 Protocol. The quotations are from the original paper by Bennett and Brassard (1984).

1. Transmissions over a Quantum Channel

“ ... one user (‘Alice’) chooses a random bit string and a random sequence of polarization bases (rectilinear or
diagonal). She then sends the other user (Bob) a train of photons, each representing one bit of the string in the
basis chosen for that bit position, a horizontal or 45–degree photon standing for a binary zero and a vertical or
135–degree standing for a binary 1. ”

(a) A generates a private, random binary sequence fdig of length m.

(b) A prepares a sequence jΨ(di, bi)i of m polarised photons, each representing a bit from
fdig; for each photon she selects a basis at random, i.e. bi = � or bi = � with equal
probability. The possible values of jΨ(di, bi)i are given by equations (2.18) to (2.21).
“ As Bob receives the photons he decides, randomly for each photon and independently of Alice, whether to
measure the photon’s rectilinear polarization or its diagonal polarization, and interprets the result as a zero
or one. As explained [before] ... a random answer is produced and all information lost when one attempts
to measure the rectilinear polarization of a diagonal photon, and vice versa. ”

(c) B receives the photons and chooses a basis b0i at random with which to measure each
one. The results of B’s measurements form a sequence of bits fd0ig.

2. Transmissions over a Classical, Possibly Public Channel

“ Subsequent steps of the protocol over an ordinary public communications channel, assumed to be susceptible to
eavesdropping but not to the injection or alteration of messages. Bob and Alice first determine, by public exchange
of messages, which photons were successfully received and of these which were received with the correct basis. If
the quantum transmission has been undisturbed, Alice and Bob should agree on the bits encoded by the photons,
even this data [sic] has never been discussed over the public channel. ”

(a) B reports to A, for each i, the value of b0i . A then tells him whether b0i = bi; if so, A
and B know with certainty that, for that particular value of i, d0i = di. All values of di
(respectively, d0i) for which the same basis has been used by A and B are kept and form
the tentative key; other values are discarded.

(b) The tentative key is processed further, in order to correct errors (i.e. cases in which
b0i = bi but d0i 6= di due to channel faults) and to eliminate any information which may
have “leaked” about the tentative key. This results in a final key.

The test for errors also serves as a test for eavesdropping; this is because the presence of an
eavesdropper results in additional errors. But how do the two legitimate users A and B distin-
guish channel–induced errors from errors due to eavesdropping?

Actually, A and B have to agree on a tolerated error rate, εT ; this can be broken down as
follows:

εT =
lne

N

m
� 100% =

�
ne,ch + ne,v

N

�
� 100%

where ne,ch is the number of channel errors and ne,v is the number of errors due to eavesdropping,
when N particles are transmitted in total. If the actual error rate, ε =

� ne
N
�
, for a particular

transmission is below εT , it is assumed that the errors are solely due to channel faults. Otherwise,
the presence of an eavesdropper is suspected (εT � εch) and the protocol is aborted. Note that, if
A and B share some secret information prior to the protocol, they can continue with the protocol

28 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

and establish a truly secret key, even in the presence of an eavesdropper21.

Example 2.8 (Errors due to eavesdropping) A transmits the state

jΨ(1,�)i = j1i

If there are no errors on the channel and no eavesdropping (ε = 0), the bit value corresponding to a
measurement by user B using the correct basis (�), which we write as Meas� jΨ(1,�)i, should give the
bit originally encoded:

Meas� jΨ(1,�)i = 1

However, if there was an intervening eavesdropper (so that εv > 0) who attempted to measure jΨ(1,�)i
with the incorrect basis, �, then jΨ(1,�)i would change from j1i to either j+i or j�i permanently
with equal probability, and the eavesdropper would get a random outcome. Subsequent measurement by B
with the correct basis would change jΨ(1,�)i to one of j0i or j1i at random. So, although B chooses
the correct basis, he is only likely to get the correct answer with 50% probability due to the
eavesdropper’s error.

Example 2.9 (Error Rate) Suppose A and B agree to exchange N = 30 photons in total over the quan-
tum channel, and that they define εT = 5% as the tolerated error rate. This means that only

ne = d5% � 30e = 2

errors are acceptable if the protocol is to succeed; any more than 2 errors and the protocol must be aborted
on suspicion of eavesdropping. Of course, in practice, A and B would choose the value of εT based on their
knowledge of the channel’s capabilities. If the channel is likely to induce, say, at least 6 errors, then εT

should be at the very least 6
30 � 100% = 20%.

The various possible outcomes of user B’s measurements are enumerated in table 2.1, for the
cases in which photon state jΨ(1,�)i is transmitted, and the eavesdropper uses the incorrect (i.e.
diagonal) basis. The symbol d̃i is used to denote the outcome of the eavesdropper’s measurement
using basis b̃i.

Table 2.1 The different cases that arise when an eavesdropper uses the wrong basis to measure a photon, and sends the
result to user B.

b̃i d̃i b0i d0i Eavesdropper’s result B’s Result Eavesdropper detected?
� 0 � 0 incorrect incorrect yes
� 0 � 1 incorrect correct no
� 0 � 0 incorrect incorrect no; bit is discarded
� 1 � 0 correct incorrect yes
� 1 � 1 correct correct no
� 1 � 1 correct correct no; bit is discarded

2.3. Quantum Key Distribution in Detail ❦ 29

In those cases where user B chooses the same basis as user A, but gets an incorrect result, the
presence of an eavesdropper is detected. Essentially, the outcome of B’s measurement is condi-
tional on the eavesdropper’s choice of basis.

Now, in the second part of BB84, A and B use a classical (i.e. non–quantum) channel. Using
this channel, they discuss their choices of bases and discard those bit positions for which they
do not match. An eavesdropper can easily listen to their discussion by wire–tapping the classical
channel; but he will not gain any information that could allow him to learn the agreed value of
the key. Even if he learns the correct bases needed for measurement, it is too late to perform his
measurements again — they are irreversible. This assumes, of course, that quantum states cannot
be stored in a temporary memory.

It is important to remember that the design of BB84 assumes the following:

1. The classical, potentially public channel handles messages in such a way that they can be
monitored, but not altered or suppressed by an eavesdropper.

2. Quantum transmissions can be suppressed or altered but cannot, in principle, be monitored
without causing a disturbance.

In the final stage of BB84, as for the other schemes for quantum key distribution, two sub–
protocols are executed: secret–key reconciliation and privacy amplification. These will be explained
later.

2.3.2 The B92 Protocol

BB84 is not the simplest quantum key distribution protocol. It actually involves using four differ-
ent quantum states, which are distinguishable from one another with respect to the basis that is
used for measurement. BB84 is, in essence, a direct application of Wiesner’s ideas on conjugate
coding and it depends on the pairwise orthogonality, so to speak, of the states involved; it uses
states which are mutually orthogonal to represent ‘0’ and ‘1’ (cf. section 2.1 for inner product hajbi
of state vectors):

hΨ(0,�) jΨ(1,�)i = h0j1i = 0

hΨ(0,�) jΨ(1,�)i = h+j�i = 0

Two years after BB84 was published, Charles Bennett pointed out that, to distinguish between
the state representing ‘0’ and the state representing ‘1’, it is unnecessary for the states to be orthog-
onal; actually, it is not necessary to use conjugate bases at all. The same effects can be produced by
using two non–orthogonal states, jΨ(0)i and jΨ(1)i, to represent ‘0’ and ‘1’. In order to measure
a photon in state jΨ(0)i (which corresponds to a polarisation of, say 45�) correctly, the polar-
ising filter’s axis must be parallel to the photon’s polarisation vector (i.e. the polarising filter’s
axis must also be at 45�). Any other angle will produce a random measurement result. Bennett
proposed a variant of the BB84 protocol based on this idea, and it is known as B92.

More formally, B92 uses two non–orthogonal states to represent ‘0’ and ‘1’,

hΨ(0) jΨ(1)i 6= 0

30 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

To measure jΨ(0)i correctly, one must apply the projection operator

P0 = 1� jΨ(1)i hΨ(1)j (2.23)

whereas, to measure jΨ(1)i correctly, the projection operator

P1 = 1� jΨ(0)i hΨ(0)j (2.24)

must be applied.
When applied to jΨ(0)i the P0 operator produces a positive value; if it is applied to jΨ(1)i,

the state is annihilated. The reverse is true of operator P1.

Example 2.10 Let jΨ(0)i and jΨ(1)i be non-orthogonal state vectors of unit length. What is the outcome
of applying, projector P0 to jΨ(1)i, and projector P1 to jΨ(0)i?

We have:

P0 jΨ(1)i = (1� jΨ(1)i hΨ(1)j) � jΨ(1)i = jΨ(1)i � jΨ(1)i
1z }| {

hΨ(1) jΨ(1)i
= jΨ(1)i � jΨ(1)i =~0

P1 jΨ(0)i = jΨ(0)i � jΨ(0)i hΨ(0) jΨ(0)i| {z }
1

=~0

B92 can be seen as a simplification of BB84, whose operation depends on the correct choice
of operator, rather than basis, for measurement. Otherwise, it differs little from the latter. The
protocol is listed fully in Figure 2.3.

2.3.3 The E91 Protocol

The E91 protocol is yet another implementation of quantum key distribution; it involves the use
of entangled pairs of particles. It is so named after Artur Ekert, who published it22 in 1991. The
basic setup is the following: users A and B are physically separated and can communicate directly
only via classical means. Both A and B independently are linked to a source of entangled spin– 1

2
particles, so that the first particle of each pair is sent to A and the second particle to B. As we
have explained at length previously, entangled particles do not have a known individual state;
it is only when they are measured that each particle is assigned an individual state. Now, when
A performs a measurement on her particle, this will affect B’s particle so that the outcome of B’s
measurement is known.

Example 2.11 The source generates an entangled pair of particles in the joint state

jψsi[12] =
1p
2
(j"#i � j#"i) = 1p

2

�
j"i[1] j#i[2] � j"i[2] j#i[1]

�
Note that the possible values of spin, when a spin– 1

2 particle is measured, are + }
2 (called “spin–up,”

corresponding to state j"i) and � }
2 (called “spin–down,” corresponding to state j#i). If A is given particle

1, and B is given particle 2, then:

2.3. Quantum Key Distribution in Detail ❦ 31

Figure 2.3 The B92 Protocol.

1. Transmissions over a Quantum Channel

(a) A generates a private, random binary sequence fdig of length m.

(b) A prepares a sequence jΨ(di)i of m polarised photons, each representing a bit from
fdig, with jΨ(0)i = j0i and jΨ(1)i = j�i, so that hΨ(0) jΨ(1)i 6= 0.

(c) B receives the photons and chooses an operator, P0 or P1 at random, with which to
measure each one. The operators are defined in Equations (2.23) and (2.24). The choices
of operators for all i form a sequence

fop(i)jop(i) = P0 or op(i) = P1 for all ig

while the results of B’s measurements form a sequence of bits fd0ig.

2. Transmissions over a Classical, Possibly Public Channel

(a) B reports to A, for each i, the choice of op(i). A then tells him whether op(i) is com-
patible� with jΨ(di)i; if so, A and B know with certainty that, for that particular value
of i, d0i = di. All values of di and d0i for which B has used a compatible measurement
operator are kept and form the tentative key; other values are discarded.

(b) As for BB84: the tentative key is processed further, in order to correct errors and to
eliminate any information which may have “leaked” about the tentative key. This re-
sults in a final key.

� The meaning of “compatible” is defined as follows: if di = 0, then op(i) = P0 is a compatible measure-
ment operator; conversely, if di = 1, then op(i) = P1 is compatible.

❧ when A measures her particle and obtains “spin–up” (state j"i), then subsequent measurement by B
will produce “spin–down” (state j#i);

❧ when B measures her particle and obtains “spin–down,” then subsequent measurement by B will
produce “spin–up.”

This assumes that A and B’s measurements are compatible, as we shall explain shortly.

As the example demonstrates, although the first measurement always produces a random
result, the second is completely deterministic. We will take up this issue again in Chapter 3,
where we will see how this behaviour can be modelled using a Markov chain.

A certain complication arises with regard to the nature of the second measurement. The sec-
ond measurement is completely deterministic only if it is compatible with the first. Physicists pre-
fer the term “totally anticorrelated” to characterise compatible measurements in this context. But
what exactly do these terms mean?

In protocol E91 for key distribution, the two users make measurements of particle spin using
analysers whose principal axis is in one of three orientations; for user A, these are at angles φA

1 =

0�, φA
2 = 45� and φA

3 = 90� with respect to the vertical. For user B’s analyser, possible orientations
are at angles φB

1 = 45�, φB
2 = 90�, and φB

3 = 180�. When A measures particle 1 by setting her
analyser’s axis at a given angle φ, so must B, when measuring particle 2, in order that they obtain
opposite results (e.g. j"i for A, and j#i for B).

32 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

So the axes of the two analysers have to be parallel in order to obtain totally anticorrelated results.
There are only two cases in which A and B’s results are guaranteed to be totally anticorrelated:
when both analyser orientations are set at 45� or 90�.

Notation 2.3 To quantify the possible measurement results for A and B, physicists use the so–called
correlation coefficient E(~αi,~βj); this varies as a function of~αi, the orientation chosen by A to make the first

measurement (~αi has an angle φA
i with respect to the vertical), and of ~βj, the vector chosen by B to make

the second measurement (~βj has an angle φB
j with respect to the vertical).

The value of E(~αi,~βj) depends on the probabilities P��(~αi,~βj), which correspond to the out-

comes of measurements with~αi and~βj. By way of example, the symbol

P+�(~αi,~βj)

denotes the probability of the following two events occurring together:

1. The first measurement, along direction~αi, produces “spin–up,” and

2. The second measurement along direction~βj, produces “spin–down.”

Notation 2.4 The subscripts + and � refer to “spin–up” (cf. value + }
2), and “spin–down” (cf. value

� }
2), respectively.

The definition of the correlation coefficient is thus:

E(~αi,~βj) = P++(~αi,~βj) + P��(~αi,~βj)� P�+(~αi,~βj)� P+�(~αi,~βj) (2.25)

Quantum theory requires that E(~αi,~βj) = �
�
~αi,~βj

�
= ~αi �~βj. Importantly for our purposes, the

total anticorrelation of A and B’s results, which occurs when their analysers’ axes are parallel, is
expressed as follows:

E(~α2,~β1) = E(~α3,~β2) = �1 (2.26)

But how does all this relate to key distribution? We have just seen that, if two users are sup-
plied with a set of spin–entangled particles then, by measuring them, they may obtain totally an-
ticorrelated results. Without exchanging any information directly, they can thus obtain sequences
of bits which are the inverse of each other. Assuming all measurements are compatible, and no
disturbance is produced prior to measurement, it is thus possible to establish a common sequence
of bits. Two problems remain:

1. Not all measurements are compatible. The compatible choices of analyser orientations (~α2,~β1
and~α3,~β2) are only two possibilities out of nine in total. It is therefore highly likely that the
second measurement will not be totally anticorrelated with the first.

2. Eavesdropping may be possible. What can be done to detect a potential eavesdropper?

2.3. Quantum Key Distribution in Detail ❦ 33

The first problem is solved by performing error correction, as is done in BB84 and B92; non–
compatible measurements generate errors with nonzero probability. Ekert23 describes this step as
follows:

“ After the transmission has taken place, A and B can announce in public the orientations of

the analysers they have chosen for each particular measurement and divide the measurements

into two separate groups: a first group for which they used different orientation of the analysers,

and a second group for which they used the same orientation of the analysers. They discard all

measurements in which either or both of them failed to register a particle at all. Subsequently, A

and B can reveal publicly the results they obtained but within the first group of measurements

only. ”

The measurements in the “second group” are known to be totally anticorrelated after the above
steps, and can be converted to a secret key.

Now, if no disturbance has occurred due to eavesdropping, the quantity

S = E(~α1,~β3) + E(~α1,~β2) + E(~α2,~β3)� E(~α2,~β2) (2.27)

will be equal to �2
p

2, as required by the rules of quantum theory. When eavesdropping does
occur, however, the value of S changes so that

�
p

2 6 S 6
p

2 (2.28)

and this allows A and B to detect the eavesdropper. Evaluating this inequality is, effectively, a
test for eavesdropping.

The full E91 protocol is listed in two parts, in Figures 2.4 and 2.5.

2.3.4 Comparing the Three Protocols

Quantum key distribution protocols rely on the two legitimate users’ ability to obtain matching
measurements on quantum particles. BB84 and B92 involve polarised photons, while E91 uses
spin–entangled particles. The “matching measurements” are defined formally as follows.

1. In BB84, user B must choose the same basis for measuring the photons received as A used
for preparing them to be certain of obtaining the correct result:

Measdecb jΨ(d, encb)i = d if encb � decb (2.29)

2. In B92, user B must use a projection operator that is compatible with the state being mea-
sured:

if op(i)fjΨ(di)ig 6=~0 then di is recovered

3. In E91, both users A and B must use parallel measurement vectors to achieve total anticor-

34 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

Figure 2.4 The E91 Protocol — Part 1.

1. Interaction with Source of EPR Pairs

(a) The epr source generates a pair
�
jψi[1] , jψ0i[2]

�
in the joint state

jψsi[12] =
1p
2
(j"#i � j#"i)

The source transmits particle 1 to A, and particle 2 to B. The individual states jψi[1] and
jψ0i[2] are, of course, undefined prior to measurement.

(b) User A chooses an analyser orientation at random (one of~α1,~α2,~α3 at angles φA
1 = 0�,

φA
2 = 45� and φA

3 = 90� respectively) and measures particle 1. The possible outcomes
of the measurement are jψi[1] = j"i (or, in units of }2 , +1) and jψi[1] = j#i (or, in units

of }2 , �1).

(c) User B chooses an analyser orientation at random (one of~β1,~β2,~β3 at angles φB
1 = 45�,

φB
2 = 90� and φB

3 = 180� respectively) and measures particle 2. The possible outcomes
of the measurement are jψ0i[2] = j"i (or, in units of }2 , +1) and jψ0i[2] = j#i (or, in units

of }2 , �1).

relation of results:

E(~α2,~β1) = E(~α3,~β2) = �1

We are ready to discuss the special processes of error correction (reconciliation) and privacy
amplification.

2.3.5 Secret-Key Reconciliation and Privacy Amplification

Quantum key distribution protocols such as BB84, B92 and E91 necessarily involve a public dis-
cussion after quantum particles have been exchanged and measured. The purpose of such a
discussion is to reconcile the bit sequences of the two legitimate users which may differ in certain
positions due to channel errors and eavesdropping. A public discussion occurs in step 2(b) of
BB84 and B92 (see Figures 2.2 and 2.3), and in steps 2(b) and 2(c) of E91 (see Figure 2.5) and is
termed a reconciliation protocol.

Brassard and Salvail24 define reconciliation as “the process of finding and correcting discrep-
ancies between the secret key sent by Alice and the one received by Bob.” They formalise the
notion of a reconciliation protocol as an operation Rp which, when applied to bit sequences A
and B, produces a sequence S as the two protocol users exchange some information Q through
discussion over a public channel:

Rp(A, B) = [S, Q] (2.30)

For an eavesdropper with access to the quantum channel linking the two users, reconciliation

2.3. Quantum Key Distribution in Detail ❦ 35

Figure 2.5 The E91 Protocol — Part 2.

2. Public Discussion

(a) User B reports to user A his choice of analyser orientation. A replies by stating whether
B’s choice is compatible with A’s choice. The only choices that are compatible are:

i. when A selects~α2, B selects~β1 (since~α2k~β1)

ii. when A selects~α3, B selects~β2 (since~α3k~β2)

(b) Steps 1(a) to 2(a) are repeated, i times. For all i, A’s choices of analyser orientation

form a sequence
n��!

A(i)
o

. Similarly, B’s choices are stored in a sequence
n��!

B(i)
o

. We
define common as the set of positions i for which compatible measurements have been
performed:

common =
n

i j compat(
��!
A(i),

��!
B(i)) = 1

o
where the function compat(

��!
A(i),

��!
B(i)) produces 1 if

��!
A(i) and

��!
B(i) are parallel:

compat(
��!
A(i),

��!
B(i)) =

�
1 if

��!
A(i) k

��!
B(i)

0 otherwise

The inverse of common is common, the set of positions for which incompatible mea-
surements have been performed:

common =
n

i j compat(
��!
A(i),

��!
B(i)) = 0

o
We write fRA(i)g for the sequence consisting of A’s measurement results, and fRB(i)g
for B’s measurement results.

(c) User B reveals to user A, for all i 2 common, the value of RB(i). A then compares this
with RA(i); then the two users can compute the quantity S (see Equation (2.27)), which
should be equal to �2

p
2 in the absence of an eavesdropper. This confirms that their

results for i 2common are totally anticorrelated and can be converted to a secret key.

is an opportunity to obtain information about their measurements. Thus a reconciliation protocol
causes information to be leaked to the eavesdropper. This leaked information is IE(SjQ), the ex-
pected amount of Shannon information that an eavesdropper E can get about S given Q. Indeed,
an optimal reconciliation protocol is designed so as to minimise IE(SjQ). Optimal protocols are
impracticable25, so in practice IE(SjQ) is never minimal. The purpose of privacy amplification26,
which must occur after reconciliation, is to eliminate all leaked information.

Typical primitives of reconciliation protocols include:

❧ the application of hash functions, drawn from a universal class27, to the legitimate users’ bit
sequences;

❧ interactive binary search, for detecting discrepancies by exchanging dlog ne bits at most (Bras-
sard and Salvail call this, the primitive BINARY);

❧ the probabilistic primitive CONFIRM, which tests for equality of the two users’ bit sequences;

36 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

❧ combinations of the above.

The protocols Shell and Cascade, also due to Brassard and Salvail (1994), use these primitives
extensively; the former of the two is an “almost ideal” protocol (i.e. optimal and efficient), while
the latter is highly efficient and preferred for implementations of quantum cryptography28.

The standard reconciliation procedure common to these protocols is the parity–check code,
which proceeds as follows:

1. The users’ bit sequences are split into blocks of equal size; the block size is chosen so that
each block contains no more than 2 errors.

2. The users compare the parity of each corresponding block in their bit sequences.

(a) If the parity of block k of A’s sequences matches the parity of the same block in B’s
sequence, they proceed to compute and compare parities for block (k+ 1).

(b) If the parities do not match, they recursively slice the block into two subsets, until
they find the exact location of the error causing the mismatch. This is the so–called
interactive binary search; as soon as the error is found, A tells B publicly how to correct
the error.

3. The bit sequences of A and B are ‘shuffled’, or randomised, using an agreed common per-
mutation. Then the process is repeated until all errors have been corrected. The outcome of
reconciliation, a common error–free bit sequence krec, is termed the reconciled key.

In a nutshell, privacy amplification29 consists of the following steps30:

1. A and B agree on the value of a constant integer τ.

2. A creates a random binary matrix K of dimensions (N � τ)� N, where N is the number of
particles transmitted over the quantum channel. For example:

K =

266664
0 1 1 � � � 0
1 1 0 � � � 1
...

...
...

...
...

1 0 1 � � � 0

377775
3. A announces the matrix K to B over the public channel.

4. A and B apply K to the reconciled key in order to produce a shorter, final key kF, of length
(N � τ). The value of τ chosen in the first step must be chosen so that the amount of valid
information the eavesdropper has about the final key is negligible.

According to Yamamoto (2004), the result of privacy amplification is to minimise the eaves-
dropper’s mutual information about the key:

IE(kF; krec,~v) = H(kF)� H(kFjkrec,~v)| {z }
negligible

(2.31)

2.3. Quantum Key Distribution in Detail ❦ 37

In the above expression, the symbol ~v denotes all the classical data Eve has managed to intercept;
it is known as the eavesdropper’s view and will be revisited shortly.

2.3.6 Security Criteria for Quantum Key Distribution

In this section, we will be concerned with formalising exactly what it means to say that a quantum
key distribution scheme is secure. We follow the conventions established in the work of Mayers
(2001).

Remember that any scheme for key distribution must allow two or more users, who share no
information initially, to eventually share a common, secret key. There are two crucial requirements
for any such scheme, namely, an enemy should not be able to obtain the key and, whatever the
enemy does, the user’s key sequences should be identical. Key distribution protocols typically
fail when the enemy has the power to impersonate each user, and when the enemy is able to jam, or
block the channel joining both users. These problems can arise in quantum key distribution, but
while the former of the two can be dealt with using authentication techniques31, the latter cannot
be solved by any protocol unless alternative channels are available.

In quantum key distribution (henceforth qkd), the legitimate users must check whether certain
validation constraints are satisfied, in order to ensure that it is possible to establish a key at all; an
example of a validation constraint is an upper bound on the tolerated number of errors on the
quantum channel.

The quantities that arise in validation constraints and also in descriptions of security require-
ments for qkd are termed security parameters. The most significant security parameter is N, the
total number of quantum systems (photons, epr pairs) exchanged during a given qkd protocol.
Other security parameters, including the tolerated error rate and the number of bits used to test
for eavesdropping, are collectively denoted~ε.

A fundamental security requirement for any qkd protocol is that the amount of information
available to an enemy, which is some function f (N,~ε), must decrease exponentially fast as N
increases. Mayers’ proof of the security of BB84 shows that this quantity is exponentially small in
N for all~ε, i.e. that

f (N,~ε) 6 c(~ε)|{z}
constant

� exp(� g(~ε)|{z}
constant

� N)

Security proofs usually involve fixed values of N and~ε.
The requirement that a qkd protocol ensures privacy can be formalised as follows:

Definition 2.6 (Privacy Criterion) We say that a quantum key distribution protocol is f –private (for
some f > 0) if, for every strategy adopted by an eavesdropper,

∑
m

Prfmg �
�

m� Hm(~k j~v)
�
6 f

where m is the length of the sender’s key~k, and ~v is the eavesdropper’s view (consisting of all the classical
data she received or generated during the protocol), and Hm(~k j~v), the conditional Shannon entropy of the

38 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

key given the eavesdropper’s view, is defined as follows:

Hm(~k j~v) = �∑
v

∑
k2f0,1gm

Prf~k,~v jmg � log2 Prf~k j~vg

The privacy criterion requires that the key be uniformly distributed32.

2.4 Dense Coding

There is a limitation inherent in the process of conjugate coding (section 1.2); the qubits that are
transmitted have to be distinguishable, and this is only guaranteed when orthogonal states are
used. Consequently, the sender can encode only one bit of information on a single qubit.

This limitation can be avoided using entangled states33. A scheme known as dense coding
allows two classical bits of information to be encoded in one qubit. Roughly, it works as follows.
In order to encode two bits of information, an entangled pair of particles is generated in one of
the so–called Bell states:

��Ψ��[12] =
1p
2

�
j0i[1] j1i[2] � j1i[1] j0i[2]

�
(2.32)

��Ψ+�[12] =
1p
2

�
j0i[1] j1i[2] + j1i[1] j0i[2]

�
(2.33)

��Φ��
[12] =

1p
2

�
j0i[1] j0i[2] � j1i[1] j1i[2]

�
(2.34)

��Φ+
�
[12] =

1p
2

�
j0i[1] j0i[2] + j1i[1] j1i[2]

�
(2.35)

There is a special class of unitary operations that can be performed on any one of these states
which will always produce another Bell state. Subsequent measurement indicates precisely which
operation was performed. According to Bouwmeester et al. (2000):

“Identifying each combination [i.e. 00, 01, 10, and 11] with different information implies that

we can encode two bits of information by manipulating both particles. [...] Identifying each

Bell state with different information we can [...] encode two bits of information, yet, now by

manipulating only one of the two particles.”

So, it is possible to represent all possible combinations of two classical bit values using the
four Bell states. The convention used in dense coding and quantum teleportation is hence known
as the Bell basis.

Definition 2.7 (Lo (2003)) Given a pair of qubits, a convenient basis to use is the Bell basis, which has
Bell states as its basis vectors. The correspondence between the states of the classical bits and the Bell states,

2.5. Quantum Teleportation ❦ 39

in this basis, is as follows:��Φ+
�
$ 00��Ψ+� $ 01��Φ�� $ 10��Ψ�� $ 11

The transformations that can be performed on Bell states, which yield yet more Bell states are:

1. The identity operation (which leaves a state unchanged);

2. State exchange (j0i[2] 7�! j1i[2] and j1i[2] 7�! j0i[2], which transforms jΨ+i[12] to jΦ+i[12]);

3. State–dependent phase shift (which transforms jΨ+i[12] to jΨ�i[12]);

4. A combination of state exchange and phase shift (which takes jΨ+i[12] to jΦ�i[12]).

An example of how the Bell states and the above operations can be used to transmit a pair of
classical bits follows.

Example 2.12 Bob wants to send the bit string 01 to Alice. They both use the convention:

a change from
��Ψ��[12] to

��Ψ��[12] represents 00

a change from
��Ψ��[12] to

��Φ+
�
[12] represents 10

a change from
��Ψ��[12] to

��Φ��
[12] represents 01

a change from
��Ψ��[12] to

��Ψ+�[12] represents 11

Alice produces and sends state jΨ�i[12] to Bob, who transforms it into jΦ�i[12] by performing a combina-
tion of state exchange and phase shift. He sends this back to Alice; she interprets it as the bit string 01 after
appropriate measurement.

2.5 Quantum Teleportation

When readers first encounter the term ‘teleportation’ in the literature on quantum information,
they are very surprised; for, teleportation is usually a word encountered only in science fiction.
However, quantum teleportation is a well–founded theoretical process which allows the trans-
mission of a quantum state using only classical bits. It is, in a sense, the converse of dense coding.

Quantum teleportation allows a certain party, Alice, to send a qubit jΨi[1] = α j0i[1] + β j1i[1]
to a colleague Bob, without delivering the particle directly to him. The trick is to use a pair of
entangled particles (labelled 2 and 3 here); particle 2 is given to Alice, and particle 3 to Bob. The
entangled state of these two particles is, say, the Bell state

��Ψ��[23] =
1p
2

�
j0i[2] j1i[3] � j1i[2] j0i[3]

�

40 ❦ Chapter 2. A Survey of Quantum Protocols and Security Criteria

Alice possesses particles 1 and 2, and Bob possesses only particle 3; whatever measurement Alice
makes on particle 2, it will affect particle 3. There is a way of expressing the joint state of particles
1 and 2 in terms of Bell states, and when Alice measures both particles, she will project them onto
a state directly related to the initial one, jΨi[1]. By telling Bob over a classical channel the result of
her measurement, he can transform particle 3 and obtain the initial state.

2.6 Summary

In this chapter, we have laid the conceptual foundations for the observations and results of our
work. We have discussed the principles and mathematics of quantum theory; the key ideas of
information–theoretic security (pun intended); and the workings of the essential quantum pro-
tocols (for key distribution, dense coding and teleportation). Importantly, we have seen the im-
portance of reconciliation and privacy amplification, tools which can be applied also outside the
context of quantum protocols. The security criteria defined by Mayers have been described as
well, and these will prove especially useful when, shortly, we will investigate the privacy of BB84
with automated verification tools.

3
Model Checking Techniques

The reader is by now in a position to appreciate that quantum protocols come in several
varieties, and that the physical phenomena they employ allow for the accomplishment of
important tasks in cryptography and general data communications. Clearly these proto-

cols merit deeper investigation, with a view to proving their correctness and level of security, and
to understand their many properties. This chapter discusses model checking, a well–established
method in computer science for analysing the properties of a system and formally proving that it
satisfies them.

The amount of intelligence a computing machine can demonstrate has always been hotly de-
bated; however, computers nowadays do have limited ability in assisting human reasoning and
constructing mathematical proofs automatically. This is the result of many years’ development
of formal, mechanical techniques for analysing system behaviour. Indeed, the study of automated
verification, as it is known, is an important part of any computer scientist’s training1. Automated
verification techniques include theorem proving and model checking.

On the one hand, theorem proving tools provide mechanical assistance in developing logical
proofs. To show the validity of a given statement, a theorem prover aids the user in applying the
inference rules of a particular logic, and maintains a history of the steps taken.

Model checking, on the other hand, is a procedure involving three main steps: constructing an
abstract model of a given system (system specification); defining the properties desired of the sys-
tem in a form that can be checked automatically (property specification); and feeding the model into
an appropriate software tool (verification). A model checker then employs its built–in algorithms to
prove, with little or no user intervention, whether the system model satisfies the properties given.

The latter of these two approaches to verification has been used in our work to investigate
the properties of certain quantum protocols. In particular, we have used logical model checking2

and probabilistic model checking3 to assess the BB84 protocol (see section 2.3.1) for quantum key
distribution.

Firstly, we will discuss, in turn, the three phases of model checking. This includes an en-
quiry into the syntax of description languages and temporal logic. We will then describe the
operation of the specific tools, spin and prism. As prism handles probabilistic models, which are
better suited for modelling quantum–mechanical behaviour, we spend some additional words

41

42 ❦ Chapter 3. Model Checking Techniques

on relevant background to the tool. The chapter concludes with a detailed presentation of epr–
pair measurement, and how this can be specified formally using logic and Bayesian (conditional)
probability.

3.1 System Specification, and Description Languages

System specification is arguably the most crucial step when performing model checking for a partic-
ular problem. The system to be analysed has to be described accurately in some general–purpose
specification language; the description, or model, must incorporate all the salient features of the
system’s behaviour, and particularly those aspects of the system relevant to verification.

For a general communications protocol, there are several levels of abstraction at which a de-
scription can be made; frequently in protocol verification the emphasis is put on concurrency
aspects and timing. It is of utmost importance that all users of a protocol interact in the correct
order, and that data is not lost due to synchronisation errors. At this level of abstraction, however,
it is immaterial what data representation is used, or whether a particular compression algorithm
is involved. A suitable protocol model for analysing timing and other concurrency–related issues
will abstract away from low–level considerations such as those just mentioned.

The situation is similar, but certainly more complex, in the analysis of security protocols. A
suitable model in this case must take into account the details of encrypting and decrypting pro-
cedures, the availability and secrecy of keys, and the nature of the communication channels used.
A specification language for security protocols will necessarily be more expressive than one in-
tended for the protocols of the previous paragraph. A discussion of various specification for-
malisms and their features follows.

Ryan et al. (2001) use the process calculus csp, originally developed by Hoare for describing
concurrent processes4, as a specification language for security protocols. csp is a mathematical
formalism that includes a rich set of operators with which one can express a great variety of be-
haviours. It is possible to use csp in order to also define system properties. For security protocols,
a given csp description is typically rewritten in the Casper notation and then supplied to the fdr

model checker5.
In order to see how csp can be used as a protocol specification language, consider the following

trivial protocol:

1. User Bob creates a key k and sends it to user Alice.

2. Alice receives k and uses it to encrypt her message m; she sends the result to Bob.

3. Bob uses k for decryption and recovers the original message m.

In the style of csp adopted in the previous reference6, this protocol would be described using
three process definitions, as shown in Figure 3.1.

The use of process calculi as specification languages for protocols is quite common. Robin
Milner’s ccs, which was developed on similar lines as csp, evolved into the π–calculus7 and is
also well–suited for this task. Interestingly, Abadi and Gordon (1999) extended the π–calculus
with cryptographic primitives and other features relevant to security protocols; the result is the
so-called spi–calculus . In more recent work, Gay and Nagarajan used ccs to model the BB84

3.1. System Specification, and Description Languages ❦ 43

Figure 3.1 A description of a trivial protocol in the csp style. The notation c?k : Key denotes receiving a key k from
channel c. Similarly c!k indicates the transmission of k over channel c. The symbol fmgk stands for the cryptogram
produced when encrypting message m under key k. Refer to Ryan et al. (2001) for details on syntax and more.

Alice = (c?k : Key ! c!fmgk ! Stop)
Bob(k) = (c!k ! c?y : Text ! decrypt(y, k)! Stop)

Protocol(k) = (Alice jj Bob(k))

quantum cryptographic protocol8 and demonstrated the inability of an eavesdropper to succeed
for a certain kind of attack. They subsequently developed a quantum process algebra, cqp, espe-
cially for the definition of quantum protocols9. cqp will be discussed in Chapter 5.

Specification languages for model checking are by no means restricted to process calculi. The
spin model checker, to be discussed in section 3.4, actually uses an imperative specification lan-
guage known as promela. We will now take a brief tour of promela and the probabilistic variant
probmela.

promela is an acronym for “protocol meta–language”10 or, in its latest incarnation, “process
meta–language”11. A model of a system in promela includes processes, channels, and state vari-
ables. As in csp, promela uses the ‘!’ operator for value transmission and ‘?’ for value reception.
There are control structures in promela akin to the c programming language, including case se-
lection, repetition and unconditional jumps. The main kinds of statements that can occur in a
promela program are12:

❧ assignments and conditions

❧ selections and repetitions

❧ send (!) and receive (?)

❧ goto and break

❧ timeout

A sample promela program, taken from Holzmann (1991, p. 99), is given in Figure 3.1 to illustrate
the syntax.

As a final example of a system description language, consider probmela
13. This language is

built upon the syntax of promela but is designed so that systems with probabilistic behaviour
can be described. Whereas most description languages support only non–determinism in sys-
tem models, in probmela the probabilities of specific events can be supplied. For instance, the
probabilistic if–statement:

PIF
[0.3]) x:=2;

[0.3]) x:=4;

[0.3]) x:=6;

FIP
in probmela performs one of the three assignment statements at random but with the respective
probabilities specified in square brackets. This construct is particularly useful and applicable to

44 ❦ Chapter 3. Model Checking Techniques

Figure 3.2 An example of an imaginary protocol which illustrates various features of the promela language.

proctype A(chan q1)
{ chan q2; // declare channel name
q1?q2; // receive channel name q2 through the q1 channel
q2!123 // send value 123 on channel q2
}
proctype B(chan qforb)
{ int x; // declare integer
qforb?x; // receive integer from qforb channel
printf("x=}
init
{
chan qname[2] = [1] of {chan}; // declare array of channels
chan qforb = [1] of {int}; // declare channel qforb
run A(qname[0]); // run process A
run B(qforb); // run process B
qname!qforb; // send channel name qforb through the qname channel
}

the description of quantum protocols, which is the concern of this work. For instance, the classical
outcome of measuring an ideal qubit can be expressed in probmela thus:

PIF

[0.5]) result:=0;

[0.5]) result:=1;

FIP

We will have more to say about probmela in Chapter 5, especially in connection with the
probUSM model checker. The synthesis of many of the features of the languages presented in this
section has given rise to qSpec, a specification language designed by the author for describing
quantum protocols14; qSpec will be detailed in Chapter 5.

3.2 Property Specification

Thus far, we have only considered means for describing system behaviour. However, this is insuf-
ficient for model checking, whose purpose is to demonstrate conclusively that a system operates
in a desirable manner, and that it is free from design faults. Expressing precisely what features
of a system are ‘desirable’ and exactly what constitutes a fault are the objectives of property spec-
ification. A property is any pattern of observable behaviour that a system should or should not
exhibit; the function of a model checker is, thus, to show whether a system satisfies a given set of
properties.

A property can be expressed as a formula in a given logic. Typically a system model is repre-
sented by a finite or infinite automaton, and the model checker must determine the truth or falsity
of the statement

σ j= Φ (3.1)

3.2. Property Specification ❦ 45

which means15, “the run σ of the automaton representing the system model satisfies formula Φ”.
Properties of a system model are usually expressed as formulae in temporal logic; in some

model checking systems however, the behaviour defined by a property is described explicitly
instead. For example, the spin model checker converts properties written in ltl (Linear Temporal
Logic) to patterns of behaviour (“never claims”) expressed in promela. The prism model checker
requires that properties are expressed in pctl. In the following sections, we proceed to describe
logics for property specification which are, virtually without exception, founded on temporal
logic.

3.2.1 Temporal Logic

Temporal logic, an important theme in philosophical study of logic, was first recommended by
Pnueli (1977) as a tool for reasoning about program computations. While propositional logic
allows one to make statements about Boolean variables using various connectives, temporal logic
includes modal operators that quantify such statements over time.

If a program computation is regarded as a sequence of states

s0 ! s1 ! � � � ! sn or, put otherwise, s0
�! sn

then one such state si may be regarded as the “present” moment in time, and all subsequent states
are then moments in the future. The modal operators of temporal logic are used to quantify over
present and future states.

Modal operators are applied to logical propositions; logical propositions consist of atomic
propositions (which are regarded as uninterpreted symbols) and connectives such as : (“not”), ^
(“and”), _ (“or”) and) (“implies”). An example of an atomic proposition is

a > 0

where a is a variable involved in some computation, and

(a > b) ^ (b > 4)) (4 < b < a)

is an example of a logical proposition.
The most commonly used operators in temporal logic are � (“henceforth”), � (“eventually”),

and � (“next”). The formula�P (“henceforth, P”) means that P is true for all states in a computa-
tion. For a computation whose present state is si and whose “future” are all states sj (j > i), the
formula �P states that the proposition P is true in state si and will remain true for all sj.

The formula �P (“eventually, P”) states that there is some point in the computation at which
P is true. If si is the present state of a computation, then �P means that, either P is true in si or it
will be true at some time in the future.

Finally, �P means that P is true in the second state of a computation (i.e. in state si+1 if si is
the present state). The three modal operators can be combined together to express more com-
plex properties. Any unbroken sequence of operators is termed a modality, and the number of
operators in the sequence is the degree of that modality.

46 ❦ Chapter 3. Model Checking Techniques

Note that the “henceforth” and “eventually” operators are duals, so that :�:P = �P. Two
commonly used combinations of these operators are,

��P which means “infinitely often, P”, i.e. there is an infinite
number of future states in which P is true. This is termed
a recurrence property.

��P which means “eventually, henceforth P”, i.e. there exists
some state after which P remains true forever. This is
called a stability property.

Therefore, the expression

(��(a > b)) ^ (�(b = 3))

is an example of a valid temporal formula that states, “eventually, a will remain greater than b
forever, and there will come a point in the computation when b = 3.” Note that the usual logical
connectives (:, ^, _,)) are also applicable within temporal formulae.

3.2.2 Linear Temporal Logic (LTL) versus Computation Tree Logic (CTL)

There are two possible views regarding the nature of time, and each of these gives rise to a dif-
ferent class of temporal logic16. In mainstream model checkers, two kinds of temporal logic are
actually used: linear and branching temporal logic17. This section is included for completeness,
but does not contribute directly to the argument of the thesis; it may thus be skipped on a first
reading, or at least until the reader is better acquainted with spin and prism.

Linear temporal logic (ltl) treats time in such a way that, each moment has a unique possible
future. Thus any ltl formula is interpreted over linear sequence, and essentially describes the
behaviour of a single program computation. ltl is used, for instance, in the model checker spin.

On the other hand, in a branching temporal logic (or computation tree logic, ctl), each moment
in time may have several possible ‘futures’. Therefore, formulae in such a logic are represented
by infinite computation trees; each tree describes a possible computation of a non–deterministic
program. The prism tool uses a branching temporal logic, known as pctl (probabilistic computa-
tion tree logic). As will be discussed in section 3.5, pctl caters for probabilistic computations, and
the trees representing a given formula are labelled with probabilities.

Of interest is the observation that model–checking algorithms for branching temporal logics
are significantly more efficient than those for linear temporal logics18. Given a transition system
of size n, representing a system model, and a temporal formula of size m, model–checking algo-
rithms for ctl run in time O(nm), while for ltl they run in time n � 2O(m). Despite this important
difference in efficiency, both kinds of temporal logic are useful; there are formulae expressible
in ltl that are not expressible in ctl and vice versa. Finally, it must be noted that some model
checkers, such as Cadence smv, are compatible with both kinds of temporal logic.

3.3. Verification ❦ 47

3.3 Verification

The final phase of a model checking solution to a given problem involves applying an automated tool
to the system description and the specification of its properties. In the literature, properties that
express desired system behaviour are termed liveness properties, while safety properties express
the absence of undesirable system behaviour19. Clearly, the model checker is expected to prove
that liveness and safety properties do hold for a given system.

A logical model checker, such as spin, produces a conclusive “yes” or “no” answer for verifi-
cation, depending on whether a property holds or not. Such an answer is definitive and accurate
only for the model of the system given to the tool; although useful conclusions can be drawn
about the actual system under consideration, one must remember that a model often omits as-
pects of system behaviour for simplicity. Only when the model is shown to correspond precisely
to the actual system, it is sound to trust the conclusions of a model checker in general.

A probabilistic model checker allows for the definition of random behaviour. Because proba-
bilities can be included in system models, erratic or improbable behavior can be tagged as such,
and the outcome of a verification is a given event’s probability of occurrence. While logical model
checking is concerned with what is possible, probabilistic model checking deals with the likelihood
of several possibilities.

Enough said about model checking techniques in general; our attention now turns to the freely
available spin

20 and prism
21 model checkers. Their workings will be discussed in detail with a

view to qualifying them as useful reasoning and analysis tools for quantum protocols.

3.4 The SPIN Model Checker

In order to use spin to verify whether a promela system description model.pml satisfies a ltl

formula Φ, three steps must be performed:

1. spin must be invoked in a mode that recognises the ltl formula and generates promela

code (a so–called never claim) for its inverse:

spin -f �:Φ�

2. The output of the previous step must be appended manually to model.pml; then spin is re-
invoked to generate an automatic verifier called pan. pan is a c program, particular to the
model in question, which must be then compiled:

spin -a model.pml; gcc -o pan pan.c

3. pan is executed to determine whether Φ holds or not in the original model after all.

A never claim, which is what spin generates in step 1 above, is a pattern of behaviour that
corresponds to formula Φ. spin’s verification algorithms are incorporated into the the pan pro-
gram generated for the model; pan tries to prove that such behaviour never occurs in the model.
Therefore, a never claim is always a description of undesirable system behaviour, and pan ex-
amines all the possible behaviours of a system to demonstrate that none are undesirable. If a
counterexample to the claim is found, pan shows it clearly in its output.

48 ❦ Chapter 3. Model Checking Techniques

This aspect (never claims) of model checking in spin is quite non–intuitive and more involved
than it could have been. One must always remember that, to prove that some ltl formula Φ is
satisfied by a promela model, spin must be supplied with its inverse, i.e. :Φ. If a never claim
for :Φ is shown to hold by pan, it means that there does not exist any state in the model under
consideration in which Φ is not true; therefore Φ always holds. To summarise:

Remark 3.1 In order to prove that ltl formula Φ is true for a given model, one must generate a never
claim for :Φ, i.e. invoke spin with the command spin -f �:Φ�.

spin uses ltl for property specification; we now briefly review ltl’s syntax and semantics.
ltl includes the “always” (or “henceforth”) operator �, the “eventually” operator �, the

“next” operator � as well as two more operators, “weak until” U and “strong until” U . To ex-
plain precisely the meaning of these operators, it will be useful to borrow and extend some ideas
and notation from section 3.2.1.

For a computation

s0 ! s1 ! � � � ! sn or s0
�! sn

the symbol s[i]will be used to denote the set of states from si to sn. The notation s j= Φ means that
formula Φ is satisfied in state s, while s[i] j= Φ has a similar meaning. In section 3.2 the notation
σ j= Φ was also used, where σ = fs0, s1, . . . , sng = s[0].

Using these conventions, the expression

s[i] j= (p U q) (3.2)

holds:

❧ either when si j= q

❧ or when si j= p and s[i+ 1] j= (p U q).

The meaning of the “strong until” operator is defined as follows; the expression

s[i] j= (p U q) (3.3)

holds when:

❧ s[i] j= (p U q) and, also,

❧ there exists some j > i for which sj j= q.

Defining the meaning of the other temporal operators is simpler. We have:

s j= �p when s j= (p U f alse)

s j= �q when s j= (true U q)

s[i] j= �p when si+1 j= p

The spin user’s guide22 contains a list of commonly used ltl formulae.

3.5. The PRISM Model Checker ❦ 49

3.5 The PRISM Model Checker

Of the two verification systems described here, prism is in many ways more suitable for analysing
quantum protocols. prism is an acronym for probabilistic model checker, and makes provisions for
expressing probabilistic behaviour as a matter of principle. Whereas a logical model checker only
states whether expression (3.1) is true or false, a tool such as prism computes the value of

Pσ,Φ = Prfσ j= Φg

for given σ and Φ, that is to say, it computes the probability with which a particular formula is
satisfied by a particular model. As will be explained in what follows, the models catered for by
prism include specific values of probability for various behaviours and so do the formulas used
in verification.

Probabilistic models and prism–like tools find applications in numerous areas of computer
science where random behaviour is involved. Oft–cited applications are randomised algorithms,
real–time systems and Monte Carlo simulation. However, the application of these ideas to quan-
tum systems is, undoubtedly, an unrivalled success story for computer science. As explained
in Chapter 2, the quantum phenomena of nature are inherently random processes; any reasoning
about such phenomena necessarily has to account for this. It follows that prism is appropriate for
analysing quantum protocols, and even quantum algorithms as well.

prism itself uses a built–in specification language that is based on Alur and Henzinger’s re-

active modules formalism (see Kwiatkowska et al. (2004) for details). Using this language the
user can describe probabilistic behaviour, either in the form of Markov decision processes (mdps),
or as discrete time Markov chains (dtmcs), or even as continuous time Markov chains (ctmcs). A
few words are in order about these various kinds of stochastic process.

3.5.1 Distributions and Probabilistic Transition Systems

In sections 3.1 to 3.4, we have regarded computations as deterministic processes; in other words,
we have treated computations simply as fixed sequences of states. In order to describe stochastic
processes, a different computational model is needed. Rather than using a fixed, pre–determined
set of state transitions, a random process attaches probability distributions to sets of states. For a
countable set of states S, a probability distribution is defined as a function π that associates with
each member s of S a specific probability. Formally,

π : S 7! [0, 1] with ∑
s2S

π(s) = 1 (3.4)

The term support refers to the set of states whose associated probability under distribution π is
non–zero23:

Supp(π) = fs 2 S : π(s) > 0g (3.5)

50 ❦ Chapter 3. Model Checking Techniques

Another related concept is the value of a distribution on a subset of states:

if S0 � S then π(S0) = ∑
s2S0

π(s) (3.6)

Notation 3.1 For a given set of states S, the symbol Dist(S) denotes all possible distributions on S.

Example 3.1 Consider a set of states S = fs0, s1, s2g and a distribution π(S) such that:

π(s0) = 0.3

π(s1) = 0.45

π(s2) = 0.25

Notice that ∑
s2S

π(s) = π(s0)+π(s1)+π(s2) = 1. In this example there is no state with zero probability,

so Supp(π) = fs0, s1, s2g = S. If a subset T � S is taken, say T = fs0, s2g, the value of π on T is

π(T) = ∑
t2T

π(t) = π(s0) + π(s2) = 0.55

A general means for describing a system with probabilistic behaviour is the probabilistic transi-
tion system. In such a model each step in a computation is represented by a move, or transition, from
a particular state s to a distribution π of successor states. Whereas in a deterministic computation
the successor of a given state s is known in advance, the successor is chosen here at random as
specified by the probability distribution. The formal definition of a probabilistic transition system
is as follows:

Definition 3.1 (Probabilistic Transition System) A probabilistic transition system is a tuple

hS, (�!), πiniti

where:

❧ S is a non–empty finite set of states;

❧ (�!) 2 S�Dist(S) is a finite transition relation;

❧ πinit 2 Dist(S) is an initial distribution on S.

Notation 3.2 The notation s �! π is shorthand for hs, πi 2 (�!).

Example 3.2 Suppose you need to describe the likelihood of various types of weather for tomorrow given
today’s weather. Assume that there are three possibilities for the weather on any day: s0 (rainy), s1 (windy),
and s2 (sunny). From empirical data, you have deduced the following:

1. If today it is raining, it is likely that it will be raining tomorrow too, but it is equally likely to be
windy.

2. A windy day is likely to be followed by a rainy day with probability 0.7 or another windy day with
probability 0.3.

3.5. The PRISM Model Checker ❦ 51

3. A sunny day is rare, and is followed by a rainy day with probability 0.4, a windy day with probability
0.4 or another sunny day with probability 0.2.

4. To construct a model for the situation, it is fair to assume that all three kinds of weather are equally
likely to start with.

A probabilistic transition system (henceforth pts) provides a concise model of the above scenario. The
elements of the pts hS, (�!), πiniti for this problem are:

S = fs0, s1, s2g
s0 �! π0; s1 �! π1; s2 �! π2 i.e. (�!) = fhs0, π0i , hs1, π1i , hs2, π2ig

πinit(s0) = πinit(s1) = πinit(s2) =
1
3

π0(s0) = π0(s1) = 0.5, π0(s2) = 0

π1(s0) = 0.7, π1(s1) = 0.3, π1(s2) = 0

π2(s0) = 0.4, π2(s1) = 0.4, π2(s2) = 0.2

3.5.2 Discrete Time Markov Chains

A probabilistic transition system is a convenient model for general stochastic processes. It is the
preferred model in standard computer science discourse, due to its relevance for programming
language semantics24. For historical reasons, it is worthwhile to mention the discrete time Markov
chain as an alternative model for probabilistic behaviour. It is the basic kind of model used for
modelling with prism.

Definition 3.2 (Discrete Time Markov Chain) A discrete time Markov chain is a tuple hS, Piwhere
S is a finite set of states and P is a transition matrix. The transition matrix is defined as P : S� S 7! [0, 1]
with ∑

t2S
P(s, t) = 1 for all s. A Markov chain satisfies what is known as the Markov property, namely

that the current state, sn, depends only on its predecessor, sn�1. We write25:

Prfsn = j j sn�1 = i, sn�2 = a, . . . , s0 = zg = Prfsn = j j sn�1 = ig

This differs from Definition 3.1 in that it uses a matrix instead of a relation to describe transi-
tions, and that it imposes a dependency between adjacent states.

Example 3.3 The scenario in Example 3.2 can also be described using a discrete time Markov chain with

S = fs0, s1, s2g

P =

s0 s1 s22640.5 0.5 0
0.7 0.3 0
0.4 0.4 0.2

375 s0

s1

s2

52 ❦ Chapter 3. Model Checking Techniques

3.5.3 Markov Decision Processes

Markov decision processes are of interest to computer scientists because, among other things,
they can be used to specify nondeterministic scheduling of concurrent, probabilistic processes26,
or systems with both nondeterministic and probabilistic transitions. prism allows us to define and
verify such systems of processes, and we mention them here merely for the sake of completeness.

Definition 3.3 (Baier et al. (2004)) A Markov decision process (mdp) is a tuple

M = (S,Act, (�!), S0)

where S is a set of states, Act a finite set of actions, (�!) � S�Act�Dist(S) the transition relation,
S0 � S the set of initial states. For s 2 S, a 2 Act, we define Steps(s) = fha, µi : s a�! µg. State s
is terminal if Steps(s) = ∅. M is finite–state if S is finite, and finitely branching if Steps(s) is finite
for all states s. A finite mdp is a mdp that is finite–state and finitely branching.

3.5.4 Probabilistic Computation Tree Logic (PCTL)

The probabilistic temporal logic pctl is used in prism as the principal means for defining prop-
erties of systems modelled by discrete–time Markov chains or Markov decision processes. It is
based on the branching temporal logic ctl

27 and allows us to define such properties as,

“Predicate P holds within a certain amount of (discrete) time steps, with probability at least 0.4.”

The syntax of pctl is defined inductively by the following grammar28:

Φ ::= true j a j Φ1 ^Φ2 j :Φ j [φ]./p (state formulae)

φ ::= Φ1 U 6t Φ2 jΦ1 U Φ2 jX Φ (path formulae)

where t 2 N, p 2 [0, 1] � R, a 2 AP, ./2 f>,>,6,<g. Other boolean operators such as _,)
also appear frequently in state formulae, but they can always be reduced to combinations of ^
and :. Note that the metavariable a ranges over AP, a set of atomic propositions.

The two kinds of formula express different types of system properties. State formulae consist
either of time–invariant propositions or take the form [φ]./p; the meaning of this latter form is,

“ there exist, with probability ./p (i.e. greater than p, equal to p, or less than p), paths
from the current state which satisfy φ. ”

The intuitive meaning of path formulae, on the other hand, is as follows:

❧ the formula Φ1 U Φ2 expresses the fact that Φ1 holds continuously from the current state
onward, until eventually Φ2 becomes true. The operator U is known as “unbounded until”.

❧ the formula Φ1 U 6t Φ2 expresses the fact that Φ1 holds continuously from the current state
onward, until Φ2 becomes true in at most t time units. The operator U 6t is known as
“bounded until”.

3.6. Modelling the Measurement of an EPR Pair ❦ 53

❧ the formula X Φ expresses the fact that, in the next computational state, Φ will become
true. The operator X is, hence, simply known as “next”.

Using the “until” operators, we can express the temporal notions “always, P” and “eventually, P”
discussed in previous sections. The reader is referred to the recent work of Ciesinski and Größer
(see Bibliography) for more details.

3.6 Modelling the Measurement of an EPR Pair

We believe that, after a detailed exposition of various subtly related topics, there is nothing more
satisfying than a solid application or example that fuses them together; this section presents pre-
cisely such an application.

Recall from section 2.1.3 the notion of entanglement, and specifically the example of the epr

state (2.12). Any entangled state is characterised by the fact that it cannot be expressed in terms of
its component states. This means that, in an entangled pair, the individual state of each particle is
unknown. Only the overall, joint state is known; when the particles are subjected to measurement,
then their individual states “come into being” and entanglement is destroyed.

For a two–particle quantum system, there are exactly four states which correspond to entan-
gled particles (“epr pairs”); these are also referred to as Bell states (viz. section 2.4). The Bell states
are defined in Equations (2.32) to (2.35), on page 38.

Measuring epr pairs is distinctly different to measuring a general two–particle quantum sys-
tem in that, after measuring one of the two particles, the outcome of measuring the other is fully
known. The fact that, measuring one particle affects the outcome of measuring the other, inde-
pendently of their physical separation, Einstein termed “spooky action at a distance”29. In the
words of Rieffel and Polak (2000):

“ Measurement gives another way of thinking about entangled particles. Particles are not

entangled if the measurement of one has no effect on the other. For instance, the state 1p
2
(j00i+

j11i) is entangled, since the probability that the first bit is measured to be j0i is 1
2 if the second

bit has not been measured. However, if the second bit had been measured, the probability that

the first bit is measured as j0i is either 1 or 0, depending on whether the second bit was mea-

sured as j0i or j1i respectively. Thus the probable result of measuring the first bit is changed

by a measurement of the second bit. On the other hand, the state 1p
2
(j00i+ j01i) is not entan-

gled: since 1p
2
(j00i+ j01i) = j0i
 (j0i+ j1i) any measurement of the first bit will yield

j0i regardless of whether the second bit was measured. Similarly, the second bit has a fifty-

fifty chance of being measured as j0i regardless of whether the first bit was measured or not.

Note that entanglement, in the sense that measurement of one particle has an effect on measure-

ments of another particle, is equivalent to our previous definition of entangled states as states

that cannot be written as a tensor product of individual states. ”

3.6.1 Specifying EPR Pair Measurement Using Logic

How can the above scenario be described formally? It is possible to specify the problem in its full
generality as a model using the language of mathematics, with a view to expressing all possible

54 ❦ Chapter 3. Model Checking Techniques

outcomes exactly in temporal logic. The elements of the model are shown in Table 3.1.

Notation 3.3 (epr states) We will consistently use the symbols ψ1, ψ2, ψ3, ψ4 to represent the epr

states jΨ�i[12] , jΨ+i[12] , jΦ�i[12] , jΦ+i[12] respectively.

Table 3.1 Notation used to build a formal, abstract model of EPR Pair Measurement.

The epr state ψ being modelled, one of: ψ1 � jΨ�i[12], ψ2 � jΨ+i[12],
ψ3 � jΦ�i[12], ψ4 � jΦ+i[12].

The particle (1 or 2) chosen to be measured first: d
The current time instant: i
The outcome of measuring the first chosen particle: mi(d, ψj) (initial value ?)
The outcome of measuring the other particle: mi(2� d, ψj) (initial value ?)
Computational state at time i: si(d, ψj)

We proceed to construct an abstract model of epr measurement using the conventions in the
table. In particular, the computation σEPRm(d, ψj) is a model of the problem in which two par-
ticles, labelled 1 and 2, are entangled in the epr quantum state denoted by ψj, and particle d is
chosen to be measured first. The computation involves three states, each denoting part of the
measurement process30:

σEPRm(d, ψj) = s0(d, ψj)! s1(d, ψj)! s2(d, ψj) (3.7)

The state s0(d, ψj) is the initial state of the computation, in which the entangled pair ψj exists
in isolation, and no measurement has yet been performed. The states s1(d, ψj) and s2(d, ψj) arise
after the first and second measurements, respectively. Each computational state consists of the
outcomes of measuring each of the two particles. We write

si =
�

mi(d, ψj); mi(2� d, ψj)
�

where mi(d, ψj) is the outcome, at time instant i, of measuring particle d. In the initial state, no
measurement has been performed, so the values of m0(d, ψj) and mi(2� d, ψj) are unknown and
written as ?.

Example 3.4 The notation used to describe the problem is heavy, so an example of its use is valuable.
Consider the question: “How does this abstract model describe the outcomes of measurements on two
particles which are jointly in the Bell state jΦ+i to start with? Assume that particle 2 is measured first.”

The scenario in the question is represented by the computation σEPRm(2, ψ4), since we are given that
d = 2 and ψ = ψ4 � jΦ+i. For the quantum state jΦ+i it is known that, possible outcomes for the first
measurement are j0i and j1i, or, in the formal notation,

m1(2, ψ4) = 0 or 1 at random

3.6. Modelling the Measurement of an EPR Pair ❦ 55

The second measurement depends on the first. We have in this case:

m1(2, ψ4) = 0) m2(1, ψ4) = 0

m1(2, ψ4) = 1) m2(1, ψ4) = 1

which means that, if the first measurement (on particle 2) produces j0i, then the second measurement (on
particle 1) will too and vice versa.

The example illustrates an important aspect of the problem, namely that the computation
is non–deterministic. There are always two possible outcomes for the first measurement, and
thus the original definition of σEPRm(d, ψj) (3.7), which is deterministic, is incorrect. Taking non–
determinism into account, we rewrite σEPRm(d, ψj) as

σEPRm(d, ψj) = s0(d, ψj)!
�s1(d, ψj)

s01(d, ψj)
! s2(d, ψj) (3.8)

For a 2 f0, 1g, we have

s0(d, ψ) =
�

m0(d, ψ); m0(2� d, ψj)
�
= (?;?) (3.9)

s1(d, ψ) =
�

m1(d, ψ); m1(2� d, ψj)
�
= (a;?) (3.10)

s01(d, ψ) =
�

m01(d, ψ); m01(2� d, ψj)
�
= (1� a;?) (3.11)

s2(d, ψ) =
�

m2(d, ψ); m2(2� d, ψj)
�

= (a; a) or (1� a; 1� a) if j = 3 or j = 4 respectively, or (3.12)

= (a; 1� a) or (1� a; a) if j = 1 or j = 2 respectively. (3.13)

Proposition 3.1 The equations (3.8) and (3.9) to (3.13) constitute a specification of epr pair measure-
ment in its full generality.

Proof. Consider all distinct instances of the epr pair measurement problem. There are four
distinct quantum states (ψ1, ψ2, ψ3, ψ4) and two cases to consider for each (i.e. when d = 1 and
when d = 2). Using the axioms in (3.9) to (3.13), enumerate all eight possible values of s2(d, ψ)

and compare them with the predictions of quantum theory for the first and second measurements.
They will be found to correspond exactly.

To summarise: a formal, abstract model of epr pair measurement has been presented. Using
this model, various properties of the problem can be formalised:

1. After the first measurement, the computation is deterministic. For the epr states jΦ�i (in
the lighter notation, ψ3 and ψ4), the outcome of the second measurement is identical to the
outcome of the first. Using notation from temporal logic we have:

�[m2(2� d, ψ3) = m1(d, ψ3)] (3.14)

�[m2(2� d, ψ4) = m1(d, ψ4)] (3.15)

56 ❦ Chapter 3. Model Checking Techniques

i.e. “there will arise, eventually, a computational state in which the outcome of the second
measurement is equal to that of the first.”

For the epr states jΨ�i (in the lighter notation, ψ1 and ψ2), the outcome of the second mea-
surement is the complement of the outcome of the first. Using notation from temporal logic
we have:

�[m2(2� d, ψ1) = 1�m1(d, ψ1)] (3.16)

�[m2(2� d, ψ2) = 1�m1(d, ψ2)] (3.17)

i.e. “there will arise, eventually, a computational state in which the outcome of the second
measurement is complementary to that of the first.”

2. At the end of the computation, both particles have well–defined individual states. Using
notation from temporal logic, for j 2 f1, 2, 3, 4g we have:

�
h�

m2(2� d, ψj) 2 f0, 1g
�
^
�

m2(d, ψj) 2 f0, 1g
�i

(3.18)

i.e. “there will arise, eventually, a computational state in which the outcomes of both mea-
surements are known to be 0 or 1 exactly.”

3. The outcomes of the measurements are invariant with respect to the order in which the
particles are measured. That is to say, it does not make a difference which of the two parti-
cles is chosen to be measured first. So the value of mi(d, ψj) is independent of d:

8d 2 f1, 2g : m1(d, ψj) = 0 or 1 at random (3.19)

8d 2 f1, 2g : m2(d, ψ3) = m2(d, ψ4) = m1(d, ψ3) = m1(d, ψ4) (3.20)

8d 2 f1, 2g : m2(d, ψ1) = m2(d, ψ2) = 1�m1(d, ψ1) = 1�m1(d, ψ1) (3.21)

These properties can be proven manually, but this is far from an easy task. However a model–
checker can prove them easily if supplied with the specification and the set of properties defined
above.

Remember that for entangled particles, the order in which they are measured does not affect
the outcomes. Therefore the use of d in the above model is actually redundant for epr pairs.
Still, the model is general enough to describe the effects of measuring any two–particle quantum
system, where the order in which particles are measured is significant.

Note that the model described in this section is non–deterministic, and therefore the possible
outcomes of the first measurement are equiprobable. It’s high time to formulate the problem in
terms of probabilities.

3.6.2 Specifying EPR Pair Measurement Using Probabilities

In any given expansion of a quantum state into component vectors, the scalar coefficients of each
component vector are probability amplitudes (cf. page 17). The interpretation of these numbers as

3.6. Modelling the Measurement of an EPR Pair ❦ 57

square roots of probabilities is due to Max Born and is fundamental to relating the mathematical
formalism of quantum mechanics to the results of observations31. In particular, for an entangled
state such as (cf. page 20)

jψi[12] = c1 � ju1v1i+ c2 � ju2v2i =
1p
2
� ju1v1i+

1p
2
� ju2v2i

the probability of the whole state collapsing to ju1v1i is c2
1 =

�
1p
2

�2
= 1

2 , while the probability of

it collapsing to ju2v2i is c2
2 =

�
1p
2

�2
= 1

2 . This collapse occurs as a consequence of the first mea-
surement on any of the two component particles. In the first case, the result of the measurement
is ju1i; in the second case the result is ju2i. This much can be inferred from the definition of an
entangled state using the Dirac notation. We will now try to formalise these facts using the no-
tion of conditional probability. The relevance of Bayesian probabilities in the study of “quantum
behaviour” is discussed at length in the work of Caves, Fuchs and Schack32.

The probability of a particular outcome in the second measurement is conditional on the out-
come of the first measurement. Since this conditional probability is known for all the different
epr states, the outcome of the second measurement is always predictable. In order to write these
probabilities, it is necessary to define appropriate events. epr pair measurement is a random
process with the following events, where ψj is one of the epr states ψ1, ψ2, ψ3, ψ4:

Meas(ψj, 1, 0) Particle 1 of an epr pair in state ψ is measured as j0i .

Meas(ψj, 1, 1) Particle 1 of an epr pair in state ψ is measured as j1i .

Meas(ψj, 2, 0) Particle 2 of an epr pair in state ψ is measured as j0i .

Meas(ψj, 2, 1) Particle 2 of an epr pair in state ψ is measured as j1i .

These events can be defined as predicates over the measurement outcomes m1(d, ψj) and
m2(2� d, ψj), which were used in the previous section:

Meas(ψj, 1, 0) = (m1(d, ψj) = 0)

Meas(ψj, 1, 1) = (m1(d, ψj) = 1)

Meas(ψj, 2, 0) = (m2(2� d, ψj) = 0)

Meas(ψj, 2, 1) = (m2(2� d, ψj) = 1)

The probabilities describing the outcomes of the first measurement are:

PrfMeas(ψj, 1, 0)g = PrfMeas(ψj, 1, 1)g = 0.5

That is to say, whatever the entangled state ψj, the outcomes of the first measurement are
always j0i and j1i, and both outcomes are equally probable. To express the possibilities that
may arise in the second measurement, we use conditional events; but the outcomes depend on
whether ψ1 and ψ2 are being modelled, or ψ3 and ψ4.

58 ❦ Chapter 3. Model Checking Techniques

PrfMeas(ψ1, 2, 0)jMeas(ψ1, 1, 1)g = 1

PrfMeas(ψ2, 2, 0)jMeas(ψ2, 1, 1)g = 1

PrfMeas(ψ1, 2, 1)jMeas(ψ1, 1, 0)g = 1

PrfMeas(ψ2, 2, 1)jMeas(ψ2, 1, 0)g = 1

However:

PrfMeas(ψ3, 2, 0)jMeas(ψ3, 1, 0)g = 1

PrfMeas(ψ4, 2, 0)jMeas(ψ4, 1, 0)g = 1

PrfMeas(ψ3, 2, 1)jMeas(ψ3, 1, 1)g = 1

PrfMeas(ψ4, 2, 1)jMeas(ψ4, 1, 1)g = 1

All other conditional probabilities for the epr pair measurement problem are identically zero.

Let’s see how a probabilistic transition system can be used to describe the measurement of
an epr pair in one of the quantum states ψ3 and ψ4: here, the second measurement produces the
same outcome as the first.

We construct a probabilistic transition system hS, (�!), πiniti with five states:

s0, the initial state, in which no measurement has been performed yet;
s1, the state which arises when the first measurement produces j0i;
s2, the state which arises when the second measurement produces j0i;
s3, the state which arises when the first measurement produces j1i; and
s4, the state which arises when the second measurement produces j1i.

The initial distribution πinit ensures that the only possible initial state is s0; we have

πinit(s0) = 1, πinit(sk) = 0 for k > 0

From the initial state, the next state represents the outcome of the first measurement. There is
thus a transition from the initial state to a distribution of successor states π0:

s0 ! π0 or hs0, π0i 2 (�!) where:

π0(s1) = 0.5

π0(s3) = 0.5

π0(sk) = 0 for k /2 f1, 3g

The above transition describes the fact that the first measurement can produce either j0i or j1i
with equal probability.

From states s1 and s3 there is only a single transition in each case, describing the only possible

3.6. Modelling the Measurement of an EPR Pair ❦ 59

result for the second measurement:

s1 ! π1 or hs1, π1i 2 (�!) where:

π1(s2) = 1

π1(sk) = 0 for k 6= 2

s3 ! π3 or hs3, π3i 2 (�!) where:

π3(s4) = 1

π3(sk) = 0 for k 6= 4

So the set of all transitions is (�!) = fhs0, π0i , hs1, π1i , hs3, π3ig. It is also possible to construct
a simpler transition system with only three states (the initial state, a state for outcome j0i, and a
state for outcome j1i) for this problem, but we will not discuss this further.

3.6.3 Model Checking EPR Pair Measurement with PRISM

In this section, we will present a trivial description of epr pair measurement for the prism tool.
The model consists of two parts: a definition of the epr pair’s behaviour when measured, and a
definition of an observer’s interaction with the particles. We discuss each definition in turn.

The first part of the model is listed and then explained below.

dtmc

module EPRpair
EPRstate : [1..4];

[init] true -> 1/4 : (EPRstate�=1) + 1/4 : (EPRstate�=2) +
1/4 : (EPRstate�=3) + 1/4 : (EPRstate�=4);

[firstmeas] true -> (EPRstate�=EPRstate);
[secondmeas] true -> (EPRstate�=EPRstate);
endmodule

All prism models commence with a declaration of the model type: a discrete–time Markov
chain is indicated by the dtmc keyword, while mdp indicates a Markov decision process and ctmc
a continuous–time Markov chain33. For our purposes, a dtmc will suffice. We proceed to define a
module EPRpair, which initialises to one of the quantum states ψ1, ψ2, ψ3, ψ4 with equal probabil-
ity 1

4 (represented by consecutive values of a local integer variable, EPRstate). The quantum state
of a physical epr pair is, by definition, unknown and this is modelled by the fact that its value is
revealed only after measurements, denoted firstmeas and secondmeas.

The labels [init], [firstmeas] and [secondmeas] denote synchronisations in prism. When-
ever they appear in more than one module, the corresponding actions are executed simultane-
ously. These labels appear also in the definition of the observer’s behaviour, defined by the fol-
lowing module:

module Observer
comp_state : [0..2] init 0; // computational state
outcome1 : [0..2]; // the value 2 represents an unknown state

60 ❦ Chapter 3. Model Checking Techniques

outcome2 : [0..2];

[init] (comp_state=0) -> (comp_state�=1);
[firstmeas] (comp_state=1) -> 1/2 : (outcome1�=0) & (comp_state�=2) +

1/2 : (outcome1�=1) & (comp_state�=2);
[secondmeas] (comp_state=2) & ((EPRstate=1) | (EPRstate=2))

-> (outcome2�=1-outcome1) & (comp_state�=2);
[secondmeas] (comp_state=2) & ((EPRstate=3) | (EPRstate=4))

-> (outcome2�=outcome1) & (comp_state�=2);
endmodule

The details of the prism syntax will be described in section 4.1.1, but it is not essential for an
understanding of the above code.

The outcomes of the observer’s measurements are described here. The first measurement will
always produce j0i or j1i with equal probability 1

2 . We know that, for ψ1 and ψ2, the outcome of
the second measurement is the inverse of that of the first (hence outcome2�=1-outcome1). How-
ever, for the epr states ψ3 and ψ4, the outcome of the second measurement is identical to that of
the first (hence outcome2�=outcome1 in this case).

What property can we check with prism for this model? We could ask for the probability that,
if the outcome of the first measurement is j1i, the outcome of the second will be j1i. To express
this we have to ask prism to compute:

P=? [((comp_state=2) & (outcome1=1)) => ((comp_state=2) & (outcome2=1))]

When commanded to compute this for the model described previously, prism produced the value
0.50, which is indeed the probability that the second measurement matches the first when all pos-
sibilities are considered. When EPRstate=1 or EPRstate=2, the property does not hold (since the
second measurement of epr pairs in states ψ1 or ψ2 produces the inverse of the first measure-
ment). The reverse is true for EPRstate=3 and EPRstate=4, so out of the four possibilities, exactly
half satisfy the property.

3.7 Summary

In this chapter, we have discussed the technique of model checking in general, and the tools spin

and prism in particular. We have looked at the syntax of several specification languages and also
the characteristics of temporal logic. The distinction between linear temporal logic and branch-
ing temporal logic has been explained; and the measurement of an entangled pair of particles
has been formally described using temporal logic and conditional probabilities. Finally, a prism

model of epr pair measurement has been detailed; this serves as a simple but effective example
of prism’s use.

4
Analysis of BB84 using PRISM and SPIN

Our work has been motivated by the observation by Nagarajan and Gay1 that model
checking is likely to be effective as a technique for analysing quantum protocols. Using
the prism and spin model checkers, we have been able to investigate various properties

of the quantum key distribution protocol BB84. This chapter presents the results of our efforts.
Quantum key distribution, despite an unconditional proof of security, has its limitations. The

need for reconciliation highlights the fact that many errors are likely to occur during transmis-
sion, even in the absence of an eavesdropper. Furthermore, the process of reconciliation divulges
valuable information to an eavesdropper, when she is present; the only way to resolve this is by
processing the key further. Also, unless the users share some information in advance, the protocol
fails to deliver a secret key in the presence of an eavesdropper. In this case, the only advantage of
quantum key distribution over its classical counterparts is that it prevents the eavesdropper from
passing unnoticed.

In Chapter 2 we skimmed over the fact that an eavesdropper has several alternative ways of
attacking a qkd protocol. In Example 2.7, we assumed that the eavesdropper’s chosen basis for
measurement “replaces” the basis with which the photon currently in transit is polarised; this,
however, is but one of several possibilities. We also need to define what is meant by the verb
“replace” in this context.

We will consider two types of eavesdropping in detail in this chapter: “intercept–resend” and
“random–substitute” eavesdropping. In general, the eavesdropping attacks possible on a qkd pro-
tocol are grouped into the following classes:

❧ individual attacks, in which the eavesdropper receives the particles, one at a time, and
measures each one individually (thus combining an ‘individual unitary interaction’ with an
‘individual measurement2);

❧ collective attacks, in which the eavesdropper applies a unitary transformation to each par-
ticle received, stores the result in a quantum memory, and measures all these results simul-
taneously (thus combining an ‘individual unitary interaction’ with a ‘collective measure-
ment’);

61

62 ❦ Chapter 4. Analysis of BB84 using PRISM and SPIN

❧ coherent attacks, in which the eavesdropper stores all the particles together in a quantum
memory, and measures all of them simultaneously (thus combining a ‘collective unitary
interaction’ with a ‘collective measurement’). Coherent attacks are the most general type of
attack possible.

Mayers’ proof of the unconditional security of BB84 tackles the most general type of attack, i.e.
coherent attacks.

Whichever attack the eavesdropper chooses to perform, she must remove each photon from
the channel; it does not seem to be possible to directly measure a photon in transit. To measure
the i-th transmitted photon, which is in state jΨ(di, bi)i, the eavesdropper must choose a basis b̃i.
As we have seen in Chapter 2, to be certain of recovering the value of di, it must be that b̃i = bi;
an incorrect choice of basis can only give the correct answer with probability 0.5. Moreover, in the
latter case, the state is altered irreversibly.

Because the eavesdropper removes photons from the channel to make measurements, she has
to replace each one of them. Not knowing with certainty what the transmitted quantum state
of each photon was, the eavesdropper can only make a guess and prepare a substitute. In an
intercept–resend scenario, she substitutes the i-th photon jΨ(di, bi)i with a new photon, in the
state jΨ(d̃i, b̃i)i. In a random–substitute scenario, the eavesdropper chooses a basis b̂i 2 f�,�g
at random, and also a random data bit d̂i 2 f0, 1g; she substitutes the i-th photon jΨ(di, bi)i with
a new photon in state jΨ(d̂i, b̂i)i.

Which of the two attacks is most effective? How likely is it that an eavesdropper passes un-
noticed? How likely is it that an eavesdropper makes consistently correct choices of basis for her
measurements? These are questions we intend to address by performing model checking with
prism. We will be using spin only in simulation mode.

Before going any further, we should formalise our intuition about the protocol by defining
precisely the various events of interest. For the i-th photon transmitted, the event in which

(b0i = bi) ^ (d0i 6= di)

arises whenever an eavesdropper makes an incorrect choice of basis b̃i and is unlucky. This is a
sufficient condition for detecting an eavesdropper, assuming a noiseless quantum channel. We
will write Pdet for the probability of detecting an eavesdropper when N photons are transmitted:

Pdet = Prf(b0i = bi) ^ (d0i 6= di)g for any one value of i < N

Later in the chapter we will show how prism may be used to see how Pdet varies with N, for
the two eavesdropping scenarios discussed above. Thus we will address the question regarding
whether an eavesdropper can pass unnoticed, and the answer will be found to be mostly in the
negative.

Now, out of N transmissions in total, there is a non–negligible probability P1/2 that just over
half will be intercepted and measured correctly by an eavesdropper. The eavesdropper makes a
“correct” measurement of the i-th photon whenever

(d̃i = di)

4.1. Two PRISM Models of BB84 ❦ 63

We write Ec(i) for this event. Let Ec,m denote the occurrence of Ec(i) for m photons. Then, the
probability that the eavesdropper obtains more than half the original bit values can be written:

P1/2 = PrfEc,mg for m >
N
2

We will study the variation of this quantity, for different values of N, and for different eavesdrop-
ping scenarios.

How can the variation of these quantities be computed using prism? Remember from section
3.5 that prism’s purpose is to determine Pσ,Φ for a given model σ (described in prism’s input
language) and Φ (expressed in pctl). Actually, the latest version of the tool (at the time of writing,
2.0) allows the user to include parameters in models, and to compute Pσ,Φ for different values of
these parameters. More formally, any prism model can be written in terms of several parameters
u1, . . . , uk:

σ = σ(u1, . . . , uk)

Thus, prism can be used to compute Pσ(u1,...,uk),Φ = Prfσ(u1, . . . , uk) j= Φg. Model checking
σ(u1, . . . , uk) against Φ with prism, for specific values of u1, . . . , uk, is termed an experiment.

In our models we have included two parameters:

N, the number of photons transmitted by Alice onto the quantum channel;
PL = Prfb̃i = big, the probability that Eve is “lucky”, by choosing the correct basis for her

measurement. This parameter will remain constant at 0.5 for our purposes.

So we can ask prism to compute the values of

Prfσ1(N, PL) j= Φg and Prfσ2(N, PL) j= Φg

for different values of N and PL (see below for an explanation of the notation). Φ is a suitable
pctl property that we wish to verify. We will discuss our choices of property Φ in section 4.2.

Notation 4.1 We will use the symbol σ1(N, PL) to denote the prism model of BB84 in section 4.1.1,
which involves intercept–resend eavesdropping. N is the total number of photons transmitted by user
Alice over the quantum channel, while PL is the probability with which the eavesdropper obtains the correct
measurement result despite an incorrect choice of basis.

Notation 4.2 We will use the symbol σ2(N, PL) to denote the prism model of BB84 in section 4.1.2,
which involves random–substitute eavesdropping.

4.1 Two PRISM Models of BB84

What follows is a detailed walkthrough of the two prism models we have built for BB84. We
describe the components of each model in turn.

64 ❦ Chapter 4. Analysis of BB84 using PRISM and SPIN

4.1.1 Model of BB84 with Intercept-Resend Eavesdropping

The source code for the first part of the model is shown below.

// Model type:
dtmc
// Number of bits to transmit:
const int N;
// Probability of obtaining correct value with wrong basis:
const double LUCKY;
// Definition of Quantum Channel:
module Channel
ch_state : [0..4];
ch_bas : [0..1];
ch_bit : [0..1];
[aliceput] (ch_state=0) -> (ch_state�=1) & (ch_bas�=al_bas) & (ch_bit�=al_bit);
[evemeasure] (ch_state=1) & (ch_bas=eve_bas)

-> (ch_state�=2);
[evemeasure] (ch_state=1) & (ch_bas!=eve_bas)

-> LUCKY : (ch_state�=2) &(ch_bit�=ch_bit) +
(1-LUCKY) : (ch_state�=2) &(ch_bit�=1-ch_bit);

[eveget] (ch_state=2) -> (ch_state�=3);
[eveput] (ch_state=3) -> (ch_state�=4) & (ch_bas�=eve_bas) & (ch_bit�=eve_bit);
[bobget] (ch_state=4) -> (ch_state�=0);
endmodule

The model of BB84 is a discrete–time Markov chain. We declare this by specifying the dtmc
keyword. The parameters of the model are declared next (a specific value is assigned to these just
prior to verification). The quantum channel is defined as a distinct entity, or agent, with which
Alice, Bob and Eve interact; a prism module is always used to define an agent. The Channel
module has three local variables, corresponding respectively to:

❧ the computational state for the channel;

❧ the basis with respect to which the photon currently on the channel is encoded (bi ; the
rectilinear basis is represented by value 0, and the diagonal basis by value 1); and

❧ the bit value (di) which is encoded by the photon currently on the channel.

Thus, when Alice sends a single photon in the quantum state jΨ(di, bi)i, the channel’s local vari-
ables ch_bit and ch_bas are updated to reflect, respectively, the values of di and bi: the channel
is capable of storing only one photon at a time. The lines of code following the declarations of
ch_state, ch_bas and ch_bit describe what changes occur to these variables when Alice, Bob
and Eve interact with it. When Alice is ready to send a newly encoded photon through the chan-
nel, she performs the [aliceput] action, which updates the variables in the channel module
accordingly. When Eve attempts to measure the photon currently on the channel, she performs
the [evemeasure] action, which results in the channel basis being altered to match Eve’s decod-
ing basis (b̃i). Also, the bit value represented by the photon currently on the channel is altered to

4.1. Two PRISM Models of BB84 ❦ 65

match the result of Eve’s measurement (d̃i). This models the essence of intercept–resend eaves-
dropping. Before proceeding, a couple of words are in order about the syntax of commands in
prism’s input language.

A prism command takes the form

[a] g �! u;

The meaning of this syntax is as follows: when action a is ready to be performed, the guard g,
which is a boolean expression, is evaluated. If g is true, the right–hand side of the expression
u, which consists of updates to variables, is executed. Frequently, it is convenient to introduce a
variable representing computational state, which is included in the guard g. When such a variable
is used, it serves as a program counter; thus in the sequence of commands

[a1] (comp_state = 1) �! u1 & (comp_state0 = 2);

[a2] (comp_state = 2) �! u2 & (comp_state0 = 3);

[a3] (comp_state = 3) �! u3 & (comp_state0 = 3);

the use of the comp_state variable ensures that the updates u1, u2, u3 are executed in precisely that
order. Note that the syntax of prism requires an update on the right–hand side of any command.
Also note that updates of variables include the prime (’) symbol, in order to distinguish them
from boolean expressions. Specific updates can be made to occur with a given probability; the
syntax

[a] g �! p1 : u1 + � � �+ pk : uk;

indicates to prism that, when performing action a, and guard g is true, only one of the updates ui

(1 6 i 6 k) is performed; the probability of ui being performed is given by pi.
The definition of Alice’s behaviour comes next:

module Alice
al_state : [0..5];
al_index : [1..N];
al_bas : [0..1];
al_bit : [0..1];
[] (al_state=0) & (eve_state>0) -> 0.5 : (al_state�=1) & (al_bas�=0) +

0.5 : (al_state�=1) & (al_bas�=1);
[] (al_state=1) -> 0.5 : (al_state�=2) & (al_bit�=0) +

0.5 : (al_state�=2) & (al_bit�=1);
[aliceput] (al_state=2) -> (al_state�=3);
[reveal] (al_state=3) -> (al_state�=4);
[loop] (al_state=4) & (al_index<N) -> (al_state�=0) & (al_index�=al_index+1);
[loop] (al_state=4) & (al_index=N) -> (al_state�=5);
[stop] (al_state=4) -> (al_state�=4);
[stop] (al_state=5) -> (al_state�=5);
endmodule

As is the case for the module Channel, this module (Alice) has a computational state of its
own, al_state, which changes at each step in the protocol. In BB84, Alice prepares N photons,

66 ❦ Chapter 4. Analysis of BB84 using PRISM and SPIN

each encoding a bit value; from the point of view of prism, this can be modelled as the repetition,
for N times, of the preparation of a single photon in a given state. This repetition is an itera-
tion, or loop, with index variable al_index, ranging from 1 to N. The loop terminates when an
eavesdropper is detected by Bob, as we will see shortly.

Alice’s first action is to choose a basis al_bas (bi) and also a bit al_bit (di) at random; each is
chosen with equal probability (0.5). Then she prepares a photon in the quantum state jΨ(di, bi)i
and performs the action [aliceput], which places these values onto the channel. After this, she
reveals her choice basis to Bob through action [reveal]. The [loop] and [stop] actions are used
to indicate the repetition of this procedure, N times, to prism.

Bob’s behaviour is described by the following module.

module Bob
bob_state : [0..7];
bob_bas : [0..1];
bob_bit : [0..1];
[] (bob_state=0) & (eve_state>0) -> 0.5 : (bob_state�=2) & (bob_bas�=0) +

0.5 : (bob_state�=2) & (bob_bas�=1);
[bobget] (bob_state=2) & (bob_bas=ch_bas)

-> (bob_state�=3) & (bob_bit�=ch_bit);
[bobget] (bob_state=2) & (bob_bas!=ch_bas)

-> 0.5 : (bob_bit�=ch_bit) & (bob_state�=3) +
0.5 : (bob_bit�=1-ch_bit) & (bob_state�=3);

[reveal] (bob_state=3) & (bob_bas!=al_bas) -> (bob_state�=4);
[reveal] (bob_state=3) & (bob_bas=al_bas) & (bob_bit=al_bit) -> (bob_state�=4);
[reveal] (bob_state=3) & (bob_bas=al_bas) & (bob_bit!=al_bit) -> (bob_state�=7);
[loop] (bob_state=4) & (al_index<N) -> (bob_state�=0);
[loop] (bob_state=4) & (al_index=N) -> (bob_state�=6);
[stop] (bob_state=6) -> (bob_state�=6); // no eavesdropping detected
[stop] (bob_state=7) -> (bob_state�=7); // eavesdropping detected
endmodule

Firstly, Bob chooses a basis at random with respect to which to measure the photon received.
Then, he performs a measurement; if his choice of basis matches the one Alice used, he recovers
the bit value encoded therein correctly (bob_bit�=ch_bit). If his choice of decoding basis is
incorrect, he obtains the correct value with probability 0.5. When Alice reveals to him her choice
of basis, using action [reveal], the computational state changes, depending on whether Eve
is detected (bob_state�=7) or not (bob_state�=4). As soon as Eve is detected, the protocol is
aborted (and the repetition, or loop, is broken).

Now, Eve also has to choose a basis at random for each of her measurements. If she is “lucky”,
although an incorrect basis is chosen, she obtains the correct bit value. This behaviour is described
in the following module, which is otherwise similar to the one just described.

module Eve
eve_state : [0..4];
eve_bas : [0..1];
eve_bit : [0..1];
nc : [0..N];

[] (eve_state=0) -> 0.5 : (eve_state�=1) & (eve_bas�=0) +

4.2. Desired Properties of BB84 and Verification Results ❦ 67

0.5 : (eve_state�=1) & (eve_bas�=1);
[evemeasure] (eve_state=1) -> (eve_state�=2);
[eveget] (eve_state=2) & (eve_bas=ch_bas)

-> (eve_state�=3) & (eve_bit�=ch_bit) & (nc�=nc+1);
[eveget] (eve_state=2) & (eve_bas!=ch_bas)

-> LUCKY : (eve_state�=3) & (eve_bit�=ch_bit) & (nc�=nc+1) +
(1-LUCKY) : (eve_state�=3) & (eve_bit�=1-ch_bit);

[eveput] (eve_state=3) -> (eve_state�=0);
endmodule

The variable nc counts the number of times that Eve’s measurement result (whether she
chooses the correct basis, or is “lucky”) is correct, i.e. when d̃i = di.

4.1.2 Model of BB84 with Random-Substitute Eavesdropping

We have seen that, in a random–substitute attack, Eve flips a coin to determine the values of d̂i

and b̂i, which she uses when preparing a substitute, in the state
���Ψ(d̂i, b̂i)

E
, for each photon she

measures. This behaviour is reflected in an amended version of module Channel, shown below.

// Eve replaces 0 with probability REPLACE on channel and 1 with
// probability (1-REPLACE). She uses the same probabilities to
// replace the channel basis.
const double REPLACE = 0.5;
module Channel
ch_state : [0..6];
ch_bas : [0..1];
ch_bit : [0..1];
[aliceput] (ch_state=0) -> (ch_state�=1) & (ch_bas�=al_bas) & (ch_bit�=al_bit);
[evemeasure] (ch_state=1) & (ch_bas=eve_bas) -> (ch_state�=2);
[evemeasure] (ch_state=1) & (ch_bas!=eve_bas)

-> LUCKY : (ch_state�=2) & (ch_bit�=ch_bit) +
(1-LUCKY) : (ch_state�=2) & (ch_bit�=1-ch_bit);

[eveget] (ch_state=2) -> (ch_state�=3);
[eveput] (ch_state=3) -> REPLACE : (ch_state�=4) & (ch_bit�=0)

+ (1-REPLACE) : (ch_state�=4) & (ch_bit�=1);
[eveputbasis] (ch_state=4) -> REPLACE : (ch_state�=5) & (ch_bas�=0)

+ (1-REPLACE) : (ch_state�=5) & (ch_bas�=1);
[bobget] (ch_state=5) -> (ch_state�=0);
endmodule

4.2 Desired Properties of BB84 and Verification Results

All quantum key distribution protocols must satisfy the following requirements:

1. The presence of an eavesdropper must be made manifest to the protocol users.

2. The protocol must ensure that the eavesdropper does not obtain the bits in the key ulti-
mately shared by the two users.

68 ❦ Chapter 4. Analysis of BB84 using PRISM and SPIN

Determining to what extent a particular protocol satisfies these requirements using model
checking allows us to compute the probabilities Pdet and P1/2, and it is our objective to do this
here for BB84. Specifically, defining a suitable pctl formula for each requirement is all that is
necessary to obtain these probabilities for the two prism models, σ1(N, PL) and σ2(N, PL). If Φ1

is a formula corresponding to the event that an eavesdropper is detected, then

Pk
det = Prfσk(N, PL) j= Φ1g with k 2 f1, 2g (4.1)

is the probability of this event in model σk(N, PL).

Similarly, we can define a pctl formula Φ2 which holds whenever the eavesdropper is able to
make more than N

2 measurements correctly. Thus we can write

Pk
1/2 = Prfσk(N, PL) j= Φ2g (4.2)

for the probability of this particular event. Once we have defined the formulae Φ1 and Φ2, we
will be in a position to conduct verification with prism and thence to compute the probabilities
(4.1) and (4.2) for various values of N and PL.

We have seen that, in both prism models of BB84, an eavesdropper is detected as soon as:

bob_state=7

It is, therefore, simple to define the formula for the first requirement:

Φ1 = true U (bob_state = 7) (4.3)

In section 4.2.1, we will show how the probabilities

P1
det(N, PL) = Prfσ1(N, PL) j= Φ1g (4.4)

P2
det(N, PL) = Prfσ2(N, PL) j= Φ1g (4.5)

vary as N is increased PL remains constant at 0.5.

With regards to verifying the second requirement: it is necessary to be able to count how many
times on average the eavesdropper obtains a correct measurement result. The counter nc in the
prism code for Eve’s behaviour provides this information. Using this counter, we can formulate
the event in which Eve obtains over half of Alice’s bits correctly as follows:

Φ2 = true U

�
nc >

N
2

�
(4.6)

In section 4.2.2 we will study the variation of

P1
1/2(N, PL) = Prfσ1(N, PL) j= Φ2g

and P2
1/2(N, PL) = Prfσ2(N, PL) j= Φ2g

for different values of N, and constant PL = 0.5.

4.2. Desired Properties of BB84 and Verification Results ❦ 69

Figure 4.1 The probability that Eve is detected in the BB84 Protocol while performing an intercept–resend attack, as a
function of the security parameter N. The crosses indicate data points produced by prism, while the dotted curve is a
non–linear least–squares fit to these points.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Pσ1(N,0.5),Φ1

N

Probability of detecting Eve (Intercept-Resend)

�
�
�
��

��
��

���
�����

���������

�
g(x)

4.2.1 The Probability of Detecting an Eavesdropper

When prism is instructed to verify the property in (4.3) against σ1(N, PL) and σ2(N, PL), the tool
performs standard procedure: it reads the model given, constructs an internal data structure, and
then attempts to enumerate all the states in which Φ1 holds. The version of Φ1 which we have
used for our analysis with prism is actually

Φ0
1 = Φ1 f(ch_state = 0) ^ (al_state = 0) ^ (eve_state = 0)g (4.7)

This formula (whose syntax is not part of pure pctl, but is peculiar to prism) matches a subset of
the states in which Φ1 is true, namely those states in which the channel and users Alice and Eve
are ready to proceed with the next transmission. So, in practice we used

Prfσk(N, PL) j= Φ0
1g (4.8)

as our definition of Pk
det, with k 2 f1, 2g, instead of (4.4) and (4.5).

prism produces the results shown in Figures 4.1 and 4.2, when instructed to verify Φ0
1 against

σ1(N, 0.5) and σ2(N, 0.5) respectively, with 5 6 N 6 30. Some representative results are given in
the next table, to an accuracy of three decimal places.

N Pk
det(N, 0.5) Pk

det(N, 0.5)
5 0.487 0.763
15 0.865 0.987
25 0.965 0.999

70 ❦ Chapter 4. Analysis of BB84 using PRISM and SPIN

Figure 4.2 The probability that Eve is detected in the BB84 Protocol while performing a random–substitute attack, as a
function of the security parameter N.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Pσ2(N,0.5),Φ1

N

Probability of detecting Eve (Random–Substitute)

�
��

���
��������������������

It is clear from the two figures that, no matter whether Eve performs an intercept–resend or
random–substitute attack, an increase in the number of photons transmitted leads to an exponen-
tially greater probability of detecting her presence. The maximum value of N for which we have
been able to compute Pσk(N,0.5),Φ1

is 30, and the value of P1
det in this case is 0.9987, while P2

det in
this case is 0.9998.

Since the trend of the data is exponential, and exponential curves tend toward the horizontal
axis asymptotically, there will never be —by the rules of calculus— a specific value of N for
which Pdet becomes unity. This means that there will always be a marginally small probability
that the eavesdropper passes completely unnoticed. Mathematically, we can summarise these
observations as follows:

lim
N!∞

Pk
det(N, 0.5) = lim

N!∞
Pσk(N,0.5),Φ1

= 1

Experiments with values of PL other than 0.5 produce the same result. The same figure has been
reproduced in the text by Williams and Clearwater (1998).

Using the Marquardt–Levenberg nonlinear least squares algorithm for curve–fitting3, we have
been able to fit the values of Pσk(N,0.5),Φ1

produced by prism to a function of the form

f (N) = 1� c1 � exp[�c2 � N]

For the model σ1(N, 0.5), with intercept–resend eavesdropping, the values obtained for c1

and c2 are, respectively, 1 and 0.134. Thus, we can write that the probability of detecting an
eavesdropper for this scenario is:

P1
det(N, 0.5) � 1� exp[�(0.134)N] (4.9)

4.2. Desired Properties of BB84 and Verification Results ❦ 71

For the model σ2(N, 0.5), with random–substitute eavesdropping, the values of P2
det(N, 0.5)

are approximated as follows:

P2
det(N, 0.5) � 1� exp[�(0.288)N] (4.10)

All these results indicate that the BB84 protocol does ensure that, with probability arbitrarily
close to unity, an eavesdropper’s presence is made manifest to the legitimate users. We can safely
conclude that requirement (1.) on page 67 is fulfilled by BB84.

Finally, we can compare the variation of P1
det(N, 0.5) with that of P2

det(N, 0.5) to conclude as to
which type of eavesdropping is more effective in masking Eve’s presence. Since

P1
det(N, 0.5) < P2

det(N, 0.5) (4.11)

it is clear that, of the two, intercept–resend is more effective.

4.2.2 The Number of Correct Bits Obtained by an Eavesdropper

Figure 4.3 The probability that Eve, by performing an intercept–resend attack, obtains more than 1
2 the total transmitted

bits correctly in BB84, as a function of the security parameter N.

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

Pσ1(N,0.5),Φ2

N

Probability of Eve obtaining more than N/2 correct bits (Intercept-Resend)

�
��

��
��

��
�����������������

For the property expressed by the formula Φ2, the results of model checking with prism are
shown in Figures 4.3 and 4.4. It is evident from the graphs that the eavesdropper is increasingly
less likely to obtain more than half Alice’s original bit sequence correctly, as N is increased. In
other words, the longer the sequence of photons transmitted by Alice, the less likely Eve is to
measure half of it correctly.

Now, for both prism models, the variation of Pσk(N,0.5),Φ2
with N traces a decaying exponential

72 ❦ Chapter 4. Analysis of BB84 using PRISM and SPIN

Figure 4.4 The probability that Eve, by performing an random–substitute attack, obtains more than 1
2 the total trans-

mitted bits correctly in BB84, as a function of the security parameter N.

0

0.2

0.4

0.6

0.8

1

5 10 15 20 25 30

Pσ2(N,0.5),Φ2

N

Probability of Eve obtaining over N/2 bits correctly (Random–Substitute)

�

� �
� �

� �

curve; this corresponds to a function of the form

f (N) = c1 � exp[�c2 � N]

We can fit the experimental results to this function as we did in the previous section; it suffices
to note here that, for the intercept–resend scenario, the values of c1 and c2 produced by the fitting
algorithm are 0.909 and 0.081 respectively. Thus we can write

P1
1/2(N, 0.5) � (0.909) exp[�(0.081)N]

Clearly, since we have exponentially decaying curves,

lim
N!∞

Pk
1/2 = 0 for k 2 f1, 2g

Note also that, in the security proof of Mayers (2001, p. 353), it is stated that:

“ In an information–theoretic setting, which is our case, a quantity fN such as the
amount of Shannon’s information [sic] available to Eve must decrease exponentially
fast as N increases. ”

The results above corroborate this claim.

4.3 A Simple SPIN Simulation Model of BB84

The input language for the spin model checker, promela, can actually be used effectively to de-
scribe BB84 and similar protocols; this is demonstrated in Appendix A, where such a description

4.3. A Simple SPIN Simulation Model of BB84 ❦ 73

is given. Although promela was designed with a view to describing classical communication
systems, it possesses two distinctive features that make it especially applicable to quantum pro-
tocols:

❧ non–determinism; and

❧ customisable data structures (records).

While promela does not provide a way for specifying the probability of any particular event,
its nondeterministic constructs are a practical tool for describing random behaviour. Thus, as dis-
cussed in the spin user guide4, the following pattern of code represents a random choice between
N possibilities:

if

:: true -> possibility1;

:: true -> possibility2;

...

:: true -> possibilityN;

fi

This type of construct necessarily treats all possibilities as if they were equiprobable.
The ability to define simple data structures in promela makes it possible to define, for in-

stance, a special type for qubits:

typedef qubit {

real amplitude0;

real amplitude1;

};

This code fragment models a qubit jψi = α j0i+ β j1i by storing only the probability amplitudes
α (amplitude0) and β (amplitude1). For BB84 we have used a similar type definition for polarised
photon:

typedef particle {

bit basis;

bit value;

}

The component basis is 0 when a rectilinearly polarised photon is represented or 1 when a diag-
onally polarised one is represented.

Since channels for communication are declared explicitly in promela, we model the quantum
channel in BB84 simply as an optical fibre with a capacity of one photon:

chan opticalfibre = [1] of {particle};

The BB84 model in Appendix A also includes communications over classical channels (a2b
and b2a) between Alice and Bob, which enable the two users to acknowledge to one another
whether each photon has been transmitted and received successfully. In lieu of parity–check

74 ❦ Chapter 4. Analysis of BB84 using PRISM and SPIN

Figure 4.5 A message sequence chart for BB84 produced by SPIN, assuming no eavesdropping.

A l i c e : 0

o p f i b r e ! p h o t o n . b a s i s

B o b : 1

o p f i b r e ? r e c v d . b a s i s

1 ! 0 , 0

o p f i b r e ! p h o t o n . v a l u eo p f i b r e ? r e c v d . v a l u e
1 ! 1 , 0

b 2 a ! a c kb 2 a ? a c k
2 ! 3 , 0

o p f i b r e ! p h o t o n . b a s i so p f i b r e ? r e c v d . b a s i s
1 ! 0 , 0

o p f i b r e ! p h o t o n . v a l u eo p f i b r e ? r e c v d . v a l u e
1 ! 0 , 0

b 2 a ! a c kb 2 a ? a c k
2 ! 3 , 0

o p f i b r e ! p h o t o n . b a s i so p f i b r e ? r e c v d . b a s i s
1 ! 0 , 0

o p f i b r e ! p h o t o n . v a l u eo p f i b r e ? r e c v d . v a l u e
1 ! 0 , 0

b 2 a ! a c kb 2 a ? a c k
2 ! 3 , 0

o p f i b r e ! p h o t o n . b a s i so p f i b r e ? r e c v d . b a s i s
1 ! 0 , 0

o p f i b r e ! p h o t o n . v a l u eo p f i b r e ? r e c v d . v a l u e
1 ! 1 , 0

b 2 a ! a c kb 2 a ? a c k
2 ! 3 , 0

o p f i b r e ! p h o t o n . b a s i so p f i b r e ? r e c v d . b a s i s
1 ! 1 , 0

o p f i b r e ! p h o t o n . v a l u eo p f i b r e ? r e c v d . v a l u e
1 ! 0 , 0

b 2 a ! a c kb 2 a ? a c k
2 ! 3 , 0

o p f i b r e ! p h o t o n . b a s i so p f i b r e ? r e c v d . b a s i s
1 ! 1 , 0

o p f i b r e ! p h o t o n . v a l u eo p f i b r e ? r e c v d . v a l u e
1 ! 0 , 0

b 2 a ! a c kb 2 a ? a c k
2 ! 3 , 0

o p f i b r e ! p h o t o n . b a s i so p f i b r e ? r e c v d . b a s i s
1 ! 1 , 0

o p f i b r e ! p h o t o n . v a l u eo p f i b r e ? r e c v d . v a l u e
1 ! 0 , 0

b 2 a ! a c kb 2 a ? a c k
2 ! 3 , 0

o p f i b r e ! p h o t o n . b a s i so p f i b r e ? r e c v d . b a s i s
1 ! 1 , 0

o p f i b r e ! p h o t o n . v a l u eo p f i b r e ? r e c v d . v a l u e
1 ! 0 , 0

b 2 a ! a c kb 2 a ? a c k
2 ! 3 , 0

o p f i b r e ! p h o t o n . b a s i so p f i b r e ? r e c v d . b a s i s
1 ! 0 , 0

o p f i b r e ! p h o t o n . v a l u eo p f i b r e ? r e c v d . v a l u e
1 ! 1 , 0

b 2 a ! a c kb 2 a ? a c k
2 ! 3 , 0

o p f i b r e ! p h o t o n . b a s i so p f i b r e ? r e c v d . b a s i s
1 ! 1 , 0

o p f i b r e ! p h o t o n . v a l u eo p f i b r e ? r e c v d . v a l u e
1 ! 0 , 0

b 2 a ! a c kb 2 a ? a c k
2 ! 3 , 0

< w a i t i n g >

< w a i t i n g >

reconciliation, it is assumed that Alice and Bob merely perform a public discussion in which
measuring and preparation bases are compared for each photon, one at a time. The code for the
various parts of the model is largely self–explanatory, and inline comments have been included
to assist in its study.

Details and the Criterion for Security against Tampering

Simulating the promela model of BB84 using the command–line version of spin provides an
elementary way of observing and understanding the workings of the protocol. The graphical
version of the tool includes additional features for visualisation, amongst which the ability to
create a message sequence diagram, such as the one in Figure 4.5.

If the process of reconciliation had been described fully in the promela model, so that the
correction of errors had been included explicitly, then Alice and Bob’s keys could be shown to
match exactly. The requirement that, at the end of the protocol, the two users share a key is
known as the criterion for security against tampering. The criterion is captured by the following

4.4. Summary ❦ 75

ltl formula:

8i : �(measurements[i] = initialkey[i]) (4.12)

(“eventually, the bit sequence produced by Bob’s measurements and

subsequently subjected to reconciliation, will match exactly the bit

sequence chosen by Alice prior to transmission.”)

A property such as (4.12) could be verified using spin against a fuller model of BB84; that
would constitute a proof that BB84 does indeed provide security against tampering, and would
be in agreement with the information–theoretic proofs currently available in the literature5.

4.4 Summary

In this chapter, we have discussed the strengths and limitations of quantum key distribution with
BB84, as well as the possible attacks an eavesdropper could attempt. Two prism models of BB84
were presented in detail, one for an intercept–resend attack and one for a “random–substitute”
attack. By verifying two pctl properties against these models with prism, we have been able to
establish that:

❧ the probability that an eavesdropper is detected by the legitimate users increases exponen-
tially with the security parameter N;

❧ the probability that an eavesdropper obtains a correct measurement result for over half the
transmissions, decreases exponentially with N;

❧ of the two eavesdropping attacks, intercept–resend is more likely to mask an enemy’s pres-
ence.

Also, we have seen that it is possible to use logical model checkers, such as spin, to prove
whether BB84 provides security against tampering. Using spin merely as a simulation tool, as we
have done, seems to be a useful technique for understanding and visualising steps in the protocol.

76 ❦ Chapter 4. Analysis of BB84 using PRISM and SPIN

5
Specification Formalisms and Related Work

In chapter 4, we saw how the method of automated verification can be fruitfully applied to the
analysis of quantum protocols. Model checking has been used many times before for protocol
design and testing in a classical (i.e. “non–quantum”) setting1. Alternative approaches to this

task are possible and numerous: while the technique of model checking is very valuable, the use
of process algebra and formal logic are equally useful for modelling protocols. This chapter aims
to discuss these latter techniques and how they may be applied to the task of specifying quantum
protocols. We will focus on the latest developments in the field.

The use of spin as a vehicle for investigating BB84 has highlighted the importance and rel-
evance of logical methods. We have, till now, paid attention only to temporal logic, since it
is the lingua franca for property specification in model checking. There exist, however, other
relevant kinds of modal logic, such as the logic of knowledge and the logic of belief. The ban

(Burrows–Abadi–Needham) logic, which is frequently used for the analysis of security protocols,
is a logic of belief. Using the constructs of ban logic, we can formalise our intuition regarding
“who knows what” in a given protocol. Interestingly, Ron van der Meyden has even developed a
model checker2 for the logic of knowledge.

Recent work by Meyden and Patra (2003) has included a logic of knowledge and time for
quantum systems, which has been used to specify some of the properties of the B92 and quantum
teleportation protocols. We will summarise the syntax and semantics of this “quantum logic” in
section 5.3. Prior to discussing logical methods, we will direct our attention toward the quantum
process algebras, cqp (Communicating Quantum Processes) and QPAlg, which were presented lately
at the qpl 2004 workshop in Turku, Finland.

How are process algebras relevant to protocol analysis? Firstly, we are reminded that a process
algebra provides a high–level, theoretical abstraction of a computational process. The develop-
ment of process algebras csp (by Tony Hoare3) and ccs (by Robin Milner4) in the sixties and
seventies supplied solid mathematical foundations for the theory of concurrency. Since com-
munication protocols, by definition, describe concurrent processes, they have always been ideal
targets for specification using process algebra. The most oft–cited classical protocol in the process
algebra literature is the alternating–bit protocol5, but this does not concern us here. Of interest
to us is the fact that process algebras often include process equivalences, which can be used to de-

77

78 ❦ Chapter 5. Specification Formalisms and Related Work

velop manual proofs that a protocol meets its specification. At the time of writing, neither cqp

nor QPAlg possess such equivalences. We will discuss cqp in section 5.1, and QPAlg in section 5.2.
Section 5.5 discusses the possibilities offered by quantum system simulators, such as QCSim6.

In section 5.4, we will discuss the design of an imperative specification language for quantum
protocols, named qSpec, which the author presented earlier this year at the prep2004 conference
in Hertfordshire, England7.

This chapter also presents, if somewhat briefly, alternatives to the prism model checker and
its input language. The research group of Prof. Christel Baier (in Bonn, Germany) have lately
proposed a probabilistic specification language, probmela, which is cousin to the specification
language for spin. They have also developed a model checker, probUSM, that uses probmela for
system models. We will discuss this further in section 5.6.

5.1 The CQP Formalism

The cqp formalism8 is based on the π–calculus9, to which it adds various primitive operations
for manipulating qubits. Its distinctive characteristics are:

❧ an expression language which allows for direct measurement and transformation of quan-
tum state;

❧ the ability to define processes involving a combination of quantum and classical operations;

❧ the ability to explicitly declare and manipulate quantum communication channels;

❧ a static type system which ensures type preservation for all processes, and unique owner-
ship of each qubit in a system.

Figure 5.1 shows a simple model of the quantum teleportation protocol, expressed using cqp.

The model consists of three agents (Alice, Bob, System) who interact with the ultimate goal of tele-
porting an entangled pair of particles (x, y) using a classical channel c. Each agent takes a certain
number of arguments, which are declared explicitly. The syntax s : ˆ[Qbit], for instance, declares
a channel s capable of storing qubits. Each computational step in the protocol is indicated by an
action, such as fx� =Hg or s![x], and actions are delimited by the prefix symbol (.), following the
conventions of ccs and the π–calculus.

Figure 5.1 A cqp model of the quantum teleportation protocol.

Alice(x : Qbit, c : ˆ[0..3], z : Qbit) = fz, x� = CNotg . fz� = Hg . c![measure z, x] . 0
Bob(y : Qbit, c : ˆ[0..3]) = c?[r : 0..3] . fy� = σrg . Use(y)

System(x : Qbit, y : Qbit, z : Qbit) = (new c : ˆ[0..3]) (Alice(x, c, z) j Bob(y, c))

To simulate the execution of the teleportation protocol, all that is necessary is to supply a qubit
z to agent System and to evaluate the result. The interested reader is referred to the original pa-
per10 for details, which includes models of quantum coin flipping and quantum bit commitment
in addition to teleportation.

5.1. The CQP Formalism ❦ 79

Formal Syntax of CQP, the Type System and its Significance

According to the inventors of cqp
11, one of the most crucial design considerations for this formal-

ism has been the inclusion of types. The original cqp paper goes to great lengths to describe the
type system and its implications. The types available for use in cqp models are defined by the
following grammar:

T ::= Int j Unit j Qbit j ˆ[T̃] j Op(1) j Op(2) j � � � j Op(n)

The first three types are self–explanatory (note that a Unit type is commonly associated with side–
effects in functional programming). The form ˆ[T̃] is the type of a communication channel capable
of storing n–tuples with type T̃ = T1, . . . , Tn. The forms Op(n) denote the types of operators on n
qubits.

The values, expressions and processes in a cqp specification involve the following syntax,
respectively:

v ::= a j b j � � � j z j 0 j 1 j � � � j 9 j unit j H j � � �
e ::= v j measure ẽ j ẽ� = e j e+ e0

P ::= 0 j (PjjP) j e?[x̃ : T̃].P j e![ẽ].P j feg.P j (new x : T)P j (qbit x)P

Values, v, consist of variables, literals and unitary operators such asH (the Hadamard transfor-
mation, see Gruska (1999) for an explanation of H). Expressions, e, can be values, measurements,
applications of unitary operators (the notation ẽ� = e stands for the application of expression
e to the tuple of expressions ẽ = e1, . . . , en), or applications of data operators (as in e + e0). The
syntax of processes is similar to that of the π–calculus, with a null process 0, parallel composition,
value reception and transmission, actions and declarations. The form (new x : T)P declares a new
channel x for use by process P, while (qbit x)P declares a qubit variable x local to P.

The semantics of expressions and processes in cqp are defined, respectively, using reduction
rules between configurations of the form

(σ; φ; e) and

(σ; φ; P)

where σ stores all declared qubits, φ is a list of channel names, e is a given expression and P a
process. The reduction rules describe probabilistic transitions between such configurations.

By applying the typing rules for cqp it is possible to eliminate design errors in a particular
specification; any expression which is not well–typed signposts a logical error. A type–checker can
be built on these rules so as to detect such errors automatically. Using typing judgements of the
form

Γ; Σ; Φ ` e : T

and Γ; Σ; Φ ` P

Gay and Nagarajan have been able to prove a type–preservation theorem, and also that each qubit
in a particular cqp model is guaranteed to belong to only one process at a particular time; the

80 ❦ Chapter 5. Specification Formalisms and Related Work

exchange of a qubit between two processes thus constitutes a physical “transfer of ownership.”12

5.2 QPAlg: Another Quantum Process Algebra

Concurrently with the cqp formalism, another quantum process algebra was developed: QPAlg,
due to Lalire and Jorrand13. QPAlg is very similar to cqp, and it is inspired by the classical process
algebras ccs and lotos. It does not possess a type system, since it was only conceived to deter-
mine how a classical, untyped process formalism can be extended to accommodate quantum
phenomena.

There are three kinds of action a process may perform in QPAlg:

❧ communication (using the ! and ? operators);

❧ unitary transformation; and

❧ measurement.

The unitary transformations available for direct use in QPAlg are the Hadamard gate (H), the
controlled–not gate (CNot), the identity (I) and the Pauli transformations σx, σy, σz (written as X,
Y, Z respectively). QPAlg does not have, in its present form, an operator for explicit probabilistic
choice. The QPAlg paper contains, as examples of applications, the construction of an epr pair,
the teleportation protocol, and BB84. The BB84 example is reproduced partly in Figure 5.2.

Figure 5.2 A simplified model of BB84 using the QPAlg process algebra. The definitions of the agents A, B, E are
omitted here for simplicity.

Alice = [a : Qubit . A[a]; fill!a . end]; Alice
Bob = [b : Qubit . empty?b . B[b]]; Bob
Eve = [e : Qubit, f : Qubit . emptyFlaw?e . E[e, f]; fillFlaw! f . end]; Eve

Flaw = [u : Qubit, v : Qubit . emptyFlaw!u . fillFlaw?v . end]
Channel = [x : Qubit, y : Qubit . fill?x . Flaw[x, y]; empty!y . end]
Protocol = (Alice k Bob k Eve k Channel)nffill, empty, fillFlaw, emptyFlawg

5.3 Quantum Logic and its Application to Protocols

Ron van der Meyden and Manas Patra have proposed a modal logic for knowledge and time in
quantum protocols14. They recognise the fact that, in the literature on quantum computation and
information, epistemic locutions of the form

“ Alice knows x. ”

are frequently encountered; the logical framework which they propose is essentially an attempt to
make such informal language precise. Their ultimate objective is to lay the foundations for “epis-
temic analysis” of quantum cryptographic protocols, and related schemes, using logical methods.

5.3. Quantum Logic and its Application to Protocols ❦ 81

Here, we will state the syntax of the quantum logic and show how it has been used to specify
certain properties of the B92 protocol for quantum key distribution.

The quantum logic involves formulas over a set of uninterpreted propositions, Prop. A for-
mula in the logic may be a proposition, a conjunction or negation of formulae, or one of the
following:

❧ the form �φ1, which retains the usual temporal meaning (“always, formula φ1 holds”);

❧ the form init(φ1), which is true if φ1 holds in the initial state of a protocol;

❧ the form Kc
i (φ1), which means “agent i knows, given her classical bits and observations,

that φ1 holds in the current state;

❧ the form Kq
i (φ1), which means “agent i knows, given a set of qubits in her possession, that

φ1 holds in the current state.

So, the syntax of formulae, Φ, in the quantum logic is given by the following grammar:

Φ ::= p j φ1 j φ2 j φ1 ^ φ2 j :φ1 j �φ1 j init(φ1) j Kc
i (φ1) j Kq

i (φ1)

where p 2Prop. The concept of “knowledge” has two variations in the logic, since it depends on
what information is used by a particular agent to decide her actions.

In order to define a property using this logic, a model of the protocol under consideration
must be built. The logic assumes that protocols are described as qubit message passing environments,
which are defined as follows (we have modified the original definition slightly):

Definition 5.1 A qubit message passing environment is an abstract model of the computational set-
ting in a quantum protocol, involving agents and channels for synchronous communication. It is defined
as a tuple

hn, S, I, Acti

where n is the number of agents involved in the system, S = Sq � Sc is the set of all states that occur in
the system, I is the initial state and Act is the set of actions performed by the various agents.

The global state S is partitioned into a set of classical states, Sc, and a set of quantum states, Sq.
Clearly Sq is a subset of the Hilbert space H of dimension 2N , the vector space inhabited by N
qubits. The set of classical states consists of elements of the form sq = hvar, loc, chan, resi, which
include

❧ classical bit assignments, var(i) : Vari 7�! f0, 1g (here, Vari is the set of variable names
belonging to agent i).

❧ qubit location assignments, loc : [0, N] 7! [0, n]. The value of loc(x) is the name of the agent
to which x is attached.

❧ channel value assignments, chan : [1..n]2 7!Msg, where Msg is a set of classical messages. If
chan(i, j) = m in a particular state, this means that message m 2Msg has just been transmit-
ted from agent i to agent j.

82 ❦ Chapter 5. Specification Formalisms and Related Work

❧ measurement result assignments. If res(i) = (Mi, mi) in a particular state, it means that
the measurement operator Mi has been applied to the quantum states in Sq, producing as a
classical outcome, the value mi.

Of interest to us is the fact that, if a quantum protocol is expressed in terms of qubit mes-
sage passing environments, then the quantum logic can be used to define its properties. We will
not delve further in the details of such environments, but it is significant to note that they do
ultimately provide a sufficient operational model for quantum protocols. It suffices to say that,
if we were to define a programming language whose operational semantics were based on transitions be-
tween qubit message passing environments, a protocol specification in this language could be conveniently
matched with a set of properties expressed in the quantum logic.

It is instructive to show how the logic can be used to describe certain properties of B92 for-
mally. Van der Meyden and Patra treat protocols as functions P pertaining to a particular envi-
ronment.

Definition 5.2 A run r : N 7! S describes a potential evolution of the system, with r(m) representing
the global state of the system at time m.

Definition 5.3 A protocol is a system comprised of specific sets of runs, which are generated by various
agents engaging in a particular pattern of behaviour. For agent i, a protocol is defined as a function
P : O+

i 7! Acti, where O+
i is the set of all observations the agent has made, and Acti is the set of

actions performed by the agent.

For the purpose of providing an informal example of the logic’s use, its creators describe B92
as shown in Figure 5.3. They claim that P, the protocol representing the eavesdropping version of
B92, satisfies the following properties:

�(b = 1) kc
A(a) ^ kc

B(a))

(“in successful runs, Alice and Bob come to classically know bit a”)

�(b = 1) :kc
E(a))

(“Eve never comes to know bit a based on classical observations alone”)

�(b = 1) kq
E(a))

(“If Eve could perform repeatable measurements on the qubit intercepted,

she could come to learn the value of a”)

5.4 The qSpec Language

The need to demonstrate correctness formally arises as much with communication protocols as
it does in the study of algorithms. After all, good software relies partly on correct implemen-
tation, but mostly on the algorithms it uses. With the advent of quantum algorithms, whose
implementation relies on the development of a substantial quantum computer, formal analysis

5.4. The qSpec Language ❦ 83

Figure 5.3 A simplified model of the B92 protocol, as used by Van der Meyden and Patra to define the protocol’s
properties in the quantum logic.

1. Initial State: Alice has a single qubit, and a classical bit, a. Bob has two classical bits, a0 and
b. The bases for the set of quantum states Sq in the system are � and �.

2. Alice flips her bit, a.

❧ If a = 0, she prepares her qubit in state j0i.
❧ If a = 1, she prepares her qubit in state j+i.

3. Alice transmits her qubit to Bob.

4. Bob flips his bit a0.

❧ If a0 = 0, he measures the qubit with basis �.

❧ If a0 = 1, he measures the qubit with basis �.

5. If the result of the measurement is either j0i or j+i, Bob sets b = 0. Otherwise, he sets
b = 1.

6. Bob sends a classical message to Alice stating the value of b.

7. The run is deemed successful only if b = 1.

We write P for the eavesdropping version of B92, in environment E , if it prescribes the above
behaviour for Alice and Bob, and Eve receives the qubit transmitted as well as Bob’s classical
message. For details, consult Meyden and Patra (2003).
We use the notation

kx
i (a) � Kx

i (a = 0) _ Kx
i (a = 1)

where x 2 fc, qg, to define the properties of P.

84 ❦ Chapter 5. Specification Formalisms and Related Work

and simulation are the only practical avenues of investigation. To this end, several quantum pro-
gramming languages have been developed, including among others qpl

15, qcl
16, and qGCL17.

The emphasis in these languages is on quantum computation; their constructs are mainly intended
for manipulating quantum superpositions and expressing quantum parallelism. For it is this par-
allelism that makes quantum algorithms so efficient and intrinsically different from their classical
counterparts.

What the aforementioned languages lack is the ability to express interaction, communica-
tion, or, put otherwise, co–operating computations. A program in one of these languages charts
the progress of a single computational process; this is suitable for quantum algorithms, which
are usually expressed as isolated computations. However, protocols in quantum communica-
tion systems explicitly involve the exchange of information between processes, both classical and
quantum–mechanical.

The absence of communication features in traditional programming languages is very com-
mon. This is quite justified, since programming languages are designed to express computations.
Communication between computational processes was given special attention in the 1980s and
resulted in the development of csp and ccs. Indeed, csp inspired a parallelised programming lan-
guage with explicit communication constructs, named occam. Furthermore, promela, conceived
originally as a dedicated specification language for communication protocols, was designed by
Gerard Holzmann for use with spin. There are several more languages that are designed to deal
with classical systems involving communication between processes.

The development of specification formalisms for quantum protocols has focused, to date, on
process algebras, such as cqp and QPAlg, which tackle communication explicitly. While process
algebras are valuable formal tools with solid mathematical foundations, they are sometimes re-
garded as too abstract and less intuitive than concrete programming languages. Nevertheless,
process algebras place the emphasis on communication and are therefore well–suited to protocol
specification. Process equivalences allow for the development of formal proofs, and there exist
software tools for analysing specifications in process algebra. Programming languages, on the
other hand, are easier to implement in software and can facilitate system simulation.

In what follows, we describe a programming language, named qSpec
18, that is designed to

serve as a middle ground between the quantum process calculi and the quantum programming
languages described previously. qSpec has a syntax that is inspired by promela and probmela.
The language will be discussed informally and examples of its use are given. Then we will de-
scribe the underlying operational model, which will be used in future work to supply a formal
semantics for the language.

5.4.1 qSpec by Example

A qSpec program consists of definitions of processes and channels. A process represents an agent
taking part in a quantum protocol, capable of performing local computations and exchanging
data with other processes. Data exchange occurs over channels, which are abstractions of com-
munication media. Each classical datum in a qSpec program belongs to one of the following data
types:

❧ bit

5.4. The qSpec Language ❦ 85

❧ char

❧ string

❧ int

❧ prob

❧ complex

These are traditional data types commonly found in programming languages: boolean values,
characters, strings of characters, integers, probabilities (real numbers between 0 and 1), complex
numbers defined as pairs of real numbers. “Quantum variables” can have one of the following
types:

❧ space[M]

❧ ket

❧ quantumstate

Any quantum state belongs to a Hilbert space of dimension M; for qubits, M = 2. The
datatype space is for declaring such spaces. Each Hilbert space is spanned by M basis vectors
(kets); quantum states can be defined in qSpec either as sums of kets, or via a density matrix.
The quantumstate type is associated with quantum states, no matter which way they are defined.
Arrays of the above types are allowed.

Processes taking part in a particular protocol manipulate local data, and can use the ! operator
for transmitting data to channels, as well as the ? operator for receiving data. The manipulations
possible on qSpec data values are:

❧ boolean operations: conjunction (and{b,c}), disjunction (or{b,c}) and inversion (not{b});

❧ arithmetic for integers, probabilities and complex numbers, including modulo n calcula-
tions and absolute value;

❧ concatenation of strings and characters (e.g. "ele"^"ment");

❧ variable assignment (e.g. a:=2;);

❧ preparation of a quantum state, using a linear combination or tensor product of kets, or
through a density matrix;

❧ unitary transformations on quantum states;

❧ projective measurement of a single quantum state;

Below is a simple example of qSpec code that illustrates the syntax.

86 ❦ Chapter 5. Specification Formalisms and Related Work

process Example {

complex c := (1.0,2.5);

space[2] qubits;

ket |0>, |1>;

basis b of qubits := {{ |0>, |1> }};

quantumstate[b] qu1 ::== sqrt(0.5)*|0> + sqrt(0.5)*|1>;

quantumstate[b] qu2 ::== sqrt(0.3)*|0> + sqrt(0.7)*|1>;

quantumstate[b] qu3 ::== tprod(qu1,qu2);

space[4] hilbert4;

ket |0>,|1>,|2>,|3>;

basis b4 of hilbert4 := {{ |0>,|1>,|2>,|3> }};

quantumstate[b4] onlythree ::== 0*|0> + sqrt(1/3)*|1> + sqrt(1/3)*|2> + sqrt(1/3)*|3>;

quantumstate[b4] result;

result ::== measure(onlythree);

}

Next is an extended example of qSpec, that models the quantum transmission phase of BB84.

global const N=10;

space[2] qubits;

basis bR of qubits := {{ |0>, |1> }};

basis bD of qubits := {{ |2>, |3> }};

chan(Alice,Bob) of quantumstate[qubits] opfibre;

chan(Alice,Bob) of string[1] a2b;

chan(Alice,Bob) of string[1] b2a;

process Alice {

array[N] of bit randombits;

array[N] of bit prepbases; // 0 for rectilinear basis, 1 for diagonal

int i=0;

while (i<N) {

probabilistic {

0.5 -> randombits[i]:=0;

0.5 -> randombits[i]:=1;

}

bit val := randombits[i];

probabilistic {

0.5 -> quantumstate[bR] photon ::== abs(val-1)*|0> + abs(val)*|1>; prepbases[i]:=0;

0.5 -> quantumstate[bD] photon ::== abs(val-1)*|2> + abs(val)*|3>; prepbases[i]:=1;

}

opfibre!photon;

string ack;

b2a?ack;

if

:: (ack=="ready") -> i:=i+1;

:: (ack!="ready") -> skip;

5.4. The qSpec Language ❦ 87

fi;

}}

process Bob {

array[N] of bit basischoices;

array[N] of bit measoutcomes;

int i=0;

while (i<N) {

probabilistic {

0.5 -> basischoices[i]:=0; quantumstate[bR] measurementresult;

0.5 -> basischoices[i]:=1; quantumstate[bD] measurementresult;

}

opfibre?measure(measurementresult);

b2a!ack;

}}

5.4.2 Understanding qSpec and its Operational Model

The objective of a qSpec program is to specify the behaviour of a set of processes capable of ma-
nipulating both classical and quantum data. The most elementary notions in qSpec are that of a
process and a channel. A process is understood as an agent that performs a sequential computation
on classical and quantum data, which is capable of transmitting and receiving data from other
processes. A channel in qSpec is a queue of data available for asynchronous communication be-
tween processes; classical channels store ordinary data values (such as integers and bits), while
quantum channels store quantum states.

A protocol specification in qSpec consists, therefore, of declarations of processes and decla-
rations of channels. Every process has its own local variables, and channels can only be used
by selected processes. In particular, the user must specify to which processes a given channel is
available. Thus, there are no global variables in qSpec.

The operational model of any qSpec program consists of three elements: a set of processes, P,
a set of classical channels, C, and a set of quantum channels, Q. Hence, Systemstate = hP, C, Qi
denotes the overall system state at any given moment.

A process has a state at any given time which depends on the contents of a classical store of
variables, a quantum store, and a set of channel names. In particular, the classical store contains
the names of classical variables used in the process, their types and their values. The quantum
store, similarly, contains the names of quantum variables used in the process and their values,
while the names of channels available for sending and receiving to the process are contained in a
set. Formally:

Definition 5.4 A process in qSpec is modelled by a tuple

(ρ, σ, cn)

where ρ is a classical store, σ is a quantum store, and cn is a set of channel names available to the process
for communication.

88 ❦ Chapter 5. Specification Formalisms and Related Work

Definition 5.5 A classical store is modelled by a function

ρ : CVar 7! Type� CValue

which associates with each classical variable a type and a value.

Definition 5.6 A quantum store is modelled by a function

σ : QVar 7! QValue

which associates with each quantum variable a quantum state, belonging to a Hilbert space of suitable
dimensions.

A classical channel is capable of storing classical variables and their values. In qSpec, when a
process sends a variable to a classical channel, a complete copy of the variable, its type and value
is introduced to the channel store, assuming that the process has access to that channel. Each
channel has a label l. Any process that requires access to a channel with label l must have l in its
set of channel names cn. Formally a classical channel is defined as follows:

Definition 5.7 A classical channel is a tuple

(l, ρCH)

where l is a unique label or channel name, and ρCH is a classical store.

Condition 5.1 We stipulate that a process (ρ, σ,cn) can only use classical channel (l, ρCH) if and only
if l 2cn.

Quantum channels are similarly modelled by tuples of the form (λ, σCH) with λ being a
unique channel label and σCH being a quantum store. The operational semantics of a qSpec

program is given by rules stating transitions between system states. The full definition of these
and typing rules is an area for future work.

5.5 Quantum System Simulation

In this section we will review the work of Black and Lane (2004), who have modelled BB84 with
the QCSim simulator and computed the probability, for this protocol, that information is received
faithfully.

Black and Lane take an intermediate approach to the simulation and verification techniques
we have presented. They propose a “simulator for quantum information systems which, like
for the simulation mode of spin, executes a trial of a particular model by resolving all non–
deterministic choices, while at the same time providing feedback to the user. Unlike spin simula-
tions, the QCSim tool considers all possible executions of a model, as would spin in verification
mode (or indeed any model checker). Thus, QCSim is a simulator which includes features typi-
cally found only in verification tools. Before discussing the capabilities of QCSim, it is worthwhile
to consider some of the issues surrounding the simulation of quantum communication schemes.

5.6. More on Probabilistic Model Checking ❦ 89

According to the authors just cited, when simulating quantum information systems, it suf-
fices to assume discrete time steps and Hilbert spaces of finite dimensions. Also, it is useful to
make provisions for “extra–systemic processing”, including extra qubits, gates and operations
—beyond those present in the system being modelled. Since a simulator is “a largely fixed piece
of software,” it cannot handle with equal efficiency all the problems one would want to consider.
Thus, although it seems convenient to analyse BB84 with QCSim, this may not be so for all quan-
tum protocols.

A QCSim model starts with declarations of all qubits used in a particular quantum simulation.
Then the initial state of the whole system is defined, and the remainder of the model consists of
quantum gate operations and commands. Note that QCSim is capable of handling mixed quantum
states (these are not expressible in terms of Dirac ket vectors). Using mixed states, noise processes
and quantum decoherence19 can be modelled directly.

Black and Lane have reduced BB84 to a quantum circuit, using only quantum gates and mea-
surements. The limitation of their approach is that it fails to model communication explicitly; all
aspects of a quantum protocol are reduced to computational stages in a circuit. Therefore, we take
the view here that their approach is overly restrictive for a systematic analysis of other quantum
protocols.

5.6 More on Probabilistic Model Checking

As we demonstrated in Chapter 4, probabilistic model checking is definitely a viable and relevant
technique for modelling quantum protocols. While the prism tool has been under development
for several years and has been applied effectively to numerous problems, its state–based input
language is counterintuitive for someone accustomed to programming in the style of C, Pascal
and other imperative languages. The recent proposal by Baier et al. (2004), of an imperative
modelling language for “communicating probabilistic processes” seems like an excellent remedy;
the language itself is named probmela, in recognition of its similarities with promela and the
fact that it explicitly models probability. The core of probmela features deterministic and ran-
domised assignments, communication, conditional and repetitive statements as well as guarded
commands. The core has been extended by the creators of the language with channel–based mes-
sage passing and atomic regions.

The complete syntax of probmela commands is given by the following grammar:

P ::= skip j x := expr j x := random(V) j d?x j d!expr j P1; P2

j IF :: g1) P1 � � � :: gn) Pn FI

j DO :: g1) P1 � � � :: gn) Pn OD

j PIF [p1]) P1 � � � [pn]) Pn FIP

j atomicfPg

The semantics of probmela is expressed in terms of Markov decision processes, which were dis-
cussed in section 3.5.3. This language has been used to describe the IPv4 zeroconf commu-
nication protocol20, and we feel that it is highly suitable for describing the random behaviour
exhibited within quantum protocols.

90 ❦ Chapter 5. Specification Formalisms and Related Work

To conclude this section, let it be noted that Frank Ciesinski and others have developed a
probabilistic model checker, probUSM21, which uses probmela as its description language. We
express the hope that continued development of probUSM may provide an alternative platform
to prism for studying quantum protocols.

5.7 Summary

We have presented, in this chapter, several alternative approaches to the task of modelling and
analysing quantum protocols. We discussed the two quantum process algebras, cqp and QPAlg,
and saw two examples of their use. We studied the logic of knowledge and time for quantum
systems from Meyden and Patra (2003) in detail, and criticised the QCSim simulator of Black and
Lane (2004). Finally, we directed our attention to alternative means of performing probabilistic
model checking.

6
Recapitulation and Directions for Future Work

This thesis is the culmination of a single year’s research on the application of formal
methods to the design and validation of protocols for quantum cryptography. In order to
conclude the presentation of this work, we will now review the salient points of the thesis.

The final section of this chapter will focus on current trends in computer science research with
regard to quantum protocols.

6.1 Review and Valuation of this Work

We can summarise the main achievements of our work as follows:

❧ We have considered “quantum protocols,” including quantum key distribution, quantum
coin flipping, quantum bit commitment, quantum teleportation and dense coding as a dis-
tinct, novel class of communication schemes. Of these, we have discussed in detail only the
BB84, B92 and E91 variants of quantum key distribution.

❧ We have detailed the technique of model checking, and demonstrated its use as an alter-
native means of investigating the properties of such protocols. In particular, we have shown
that probabilistic model checking can provide a practical alternative to information–theoretic proofs
of security.

❧ We have discussed the use of quantum process algebras and their applicability in the context
of quantum protocols.

❧ Logical methods for defining the properties of quantum protocols, including a dedicated “quantum
logic,” have been presented.

91

92 ❦ Chapter 6. Recapitulation and Directions for Future Work

On a per chapter basis, the topics described in this thesis have been:

❧ Chapter 2

– the fundamental aspects of quantum theory relevant to quantum protocols, including
orthogonality of quantum states and entanglement;

– Shannon’s formalisation of the concept of perfect security;

– the importance of secret–key reconciliation and privacy amplification; and

– Dominic Mayers’ security criteria for quantum key distribution.

❧ Chapter 3

– the principle of model checking;

– several specification languages for system and property descriptions;

– the distinction between linear temporal logic and branching temporal logic; and

– how the measurement of an epr pair can be formalised using random events and logi-
cal formulae.

❧ Chapter 4

– what types of attack an eavesdropper may attempt in an attempt to subvert a quantum
cryptographic protocol;

– how prism has been used to compute the probability of detecting an eavesdropper in
BB84, and the probability of an eavesdropper obtaining a significant number of accu-
rate measurements in the same protocol; and

– how spin might be used to show that BB84 satisfies the criterion for security against
tampering.

❧ Chapter 5

– the characteristics of the quantum process algebras cqp and QPAlg;

– the logic, due to Ron van der Meyden and Manas Patra, for knowledge and time in
quantum systems; and

– the probabilistic specification language probmela, and the model checker probUSM.

We have reason to believe that the various techniques presented herein are likely to become
increasingly relevant to physicists as well as other potential designers and implementors of quan-
tum protocols. The ability to develop and test parameterised models of such protocols, as we
have done with prism for BB84, provides a useful way of describing implementation–specific fea-
tures. For instance, in a particular implementation of BB84, the probability PL of an eavesdropper
making a correct measurement, despite an incorrect choice of basis, may depend on the physical
limitations of some measurement device. This can be incorporated easily in a system description
suitable for model checking.

6.2. Open Issues and Trends ❦ 93

While practical developments in the area of quantum information are necessarily driven by
what is possible experimentally, computer scientists are able to contribute significantly to the
theoretical foundations and design of future systems. Well–established techniques in comput-
ing, such as those discussed here, have more to provide to the field than meets the eye. As we
mentioned in the first chapter, this has been the case for classical communication protocols, and
especially so in the cases where security is a foremost concern.

6.2 Open Issues and Trends

One of the questions that need to be addressed, before any study of quantum protocols can be said
complete, is: “What is the smallest set of primitive operations with which all quantum protocols
can be described?” Clearly, this cannot be answered without recourse to physics; experimental
physicists are likely to discover phenomena we are currently unaware of, and these might be put
to use in new protocols. Thus, we believe that current research in formal models and semantics
for quantum protocols is still at an early stage; it will necessarily be driven by developments in
physics.

From our investigations, we have concluded that all quantum protocols proposed to date are
generally interleavings of quantum computations, classical computations, and communication
over (mainly) quantum channels. The most promising feature of quantum theory with regard to
quantum protocols is entanglement, and there is a growing interest in the potential of this phe-
nomenon. We have not discussed entanglement–based protocols in detail in this thesis; clearly,
this is a specific area for future investigations.

An important point is the fact that, while the qubit has been regarded as a basic “unit” in
most of the quantum computing and information research, there exist quantum systems of higher
dimensions. Fitzgerald’s recent dissertation1 highlights the importance of this by dealing specif-
ically with qudits, i.e. quantum states with d basis vectors. Qudits are likely to be useful for
developing new quantum protocols: they could be used, for instance, to extend the dense coding
protocol so that more than two classical bits may be encoded onto a single quantum system. One
of the distinctive features of qSpec is that it allows for the manipulation of qudits, and we believe
that other quantum programming languages will soon incorporate this facility.

6.3 Conclusion

We feel that standard techniques in computer science for formal specification and verification are
valuable means for understanding and analysing quantum protocols; it is our hope that we have
demonstrated this successfully in this thesis. If the methods we have described do indeed prove
useful to the quantum information community, our research will have achieved its primary goal.

94 ❦ Chapter 6. Recapitulation and Directions for Future Work

7
Appendix: SPIN Simulation Model of BB84

#define INITIALKEYLENGTH 10

/*** Declarations of data types ***/

mtype = {ack, ok, nok};

typedef particle {

bit basis;

bit value;

}

typedef tuple {

int index;

bit chosenbasis;

}

/*** Communication channels ***/

chan opfibre = [1] of {particle}; /* quantum channel */

chan a2b = [1] of {mtype}; /* classical channel from Alice to Bob */

chan b2a = [1] of {tuple}; /* classical channel from Bob to Alice */

/*** Inline function definition for measuring photon p with basis b ***/

inline decode(p,b) {

bit measureresult=0;

/* need to compare p.basis with b */

if

:: (p.basis==b) -> printf("Correct basis."); measureresult = p.value;

:: (p.basis!=b) -> measureresult = 0;

:: (p.basis!=b) -> measureresult = 1;

fi;

printf("Measurement result = %d\n", measureresult);

};

95

96 ❦ Appendices

/*** Sender (Alice) ***/

active proctype Alice()

{

bit initialkey[INITIALKEYLENGTH];

bit encodingbases[INITIALKEYLENGTH];

int a_counter=0;

/* Preparation phase: */

atomic {

do

:: (a_counter<INITIALKEYLENGTH) -> initialkey[a_counter] = 0; a_counter++;

:: (a_counter<INITIALKEYLENGTH) -> initialkey[a_counter] = 1; a_counter++;

:: else -> break;

od;

a_counter=0;

do

:: (a_counter<INITIALKEYLENGTH) -> encodingbases[a_counter] = 0; a_counter++;

:: (a_counter<INITIALKEYLENGTH) -> encodingbases[a_counter] = 1; a_counter++;

:: else -> break;

od;

}; /* end atomic construct */

/* Quantum Transmission phase: */

a_counter = 0;

do

:: (a_counter<INITIALKEYLENGTH) ->

particle photon;

photon.basis = encodingbases[a_counter];

photon.value = initialkey[a_counter];

printf("Alice sent photon representing the bit value %d\n", photon.value);

opfibre!photon.basis;

opfibre!photon.value;

b2a?ack;

a_counter++;

:: else -> break;

od;

/* Public Discussion phase */

tuple decoding;

do

:: b2a?decoding.index -> b2a?decoding.chosenbasis;

if

Appendix ❦ 97

:: (encodingbases[decoding.index] == decoding.chosenbasis) -> a2b!ok;

:: (encodingbases[decoding.index] != decoding.chosenbasis) -> a2b!nok;

fi;

od;

}

/*** Receiver (Bob) ***/

active proctype Bob()

{

bit decodingbases[INITIALKEYLENGTH];

bit measurements[INITIALKEYLENGTH];

int b_counter=0;

particle recvd;

/* Choosing bases for measurements */

atomic {

do

:: (b_counter<INITIALKEYLENGTH) -> decodingbases[b_counter] = 0; b_counter++;

:: (b_counter<INITIALKEYLENGTH) -> decodingbases[b_counter] = 1; b_counter++;

:: else -> break;

od;

}; /* end atomic construct */

/* Receiving Photons and Making Measurements */

b_counter = 0;

do

:: opfibre?recvd.basis -> opfibre?recvd.value;

atomic {

decode(recvd, decodingbases[b_counter]);

measurements[b_counter] = measureresult;

}; /* end atomic construct */

b_counter++;

b2a!ack;

od;

/* Public Discussion phase */

/* Bob sends tuples of the form (index,basis) to Alice, to tell her what bases

he chose for measuring each photon: */

b_counter = 0;

do

:: (b_counter<INITIALKEYLENGTH) ->

tuple tup;

tup.index = b_counter;

98 ❦ Appendices

tup.chosenbasis = decodingbases[b_counter];

b2a!tup.index;

b2a!tup.chosenbasis;

/* waiting for Alice�s reply and react: */

do

:: a2b?ok -> printf("Bob used the CORRECT basis for measuring this photon.");

:: a2b?nok -> printf("Bob used the WRONG basis for measuring this photon.");

od;

b_counter++;

:: else -> break;

od;

};

/*** Eavesdropper (Eve) ***/

active proctype Eve()

{

bit evedecodingbases[INITIALKEYLENGTH];

bit evemeasurements[INITIALKEYLENGTH];

int e_counter=0;

particle everecvd;

/* Choosing bases for measurements */

atomic {

do

:: (e_counter<INITIALKEYLENGTH) -> evedecodingbases[e_counter] = 0; e_counter++;

:: (e_counter<INITIALKEYLENGTH) -> evedecodingbases[b_counter] = 1; e_counter++;

:: else -> break;

od;

}; /* end atomic construct */

/* Receiving Photons and Making Measurements */

e_counter = 0;

do

:: opfibre?everecvd.basis -> opfibre?everecvd.value;

opfibre!everecvd.basis; opfibre!everecvd.value; /* intercept-resend attack */

atomic {

decode(everecvd, decodingbases[e_counter]);

measurements[e_counter] = measureresult;

}; /* end atomic construct */

e_counter++;

od;

}

Notes

Preface:

1See Bill Gates, Microsoft Progress Report: Security, March 31, 2004; available from
http://www.microsoft.com/mscorp/execmail/2004/03-31security.asp [visited August 6, 2004].

2See Holzmann (1991).
3See Ryan et al. (2001).
4See Holzmann (1991) loc. cit.
5See http://www.ftponline.com/special/testing/holzmann for a transcript of this interview [visited August 6,

2004].
6See Feynman (1999).
7See Williams and Clearwater (2000).
8See Gruska (1999); Nielsen and Chuang (2000); Williams and Clearwater (2000).
9See Stewart (1997).

10See Landauer (1999).
11See Holzmann (2003).
12See Kwiatkowska et al. (2004); Parker et al. (2004).
13See Bennett and Brassard (1984).
14See Mayers (2001).
15Ibid.
16See Papanikolaou (2004).
17See Nagarajan and Gay (2004).
18See Baier et al. (2004).
19See Meyden and Patra (2003).
20See Black and Lane (2004).

Chapter 1:

1See Gruska (1999); Nielsen and Chuang (2000).
2See Landauer (1999).
3See Gruska (1999); Nielsen and Chuang (2000).
4See Wiesner (1969).
5See Mayers (2001).

99

100 ❦ Notes

6Note that implementations which include imperfect apparatus necessarily have limited security; for instance, some of
the original prototypes of quantum cryptography were known to produce noises sufficiently discernible to facilitate the
enemy’s task greatly.

7Practical systems for quantum cryptography are already commercially available at the time of writing from the com-
panies nec, magiq, and id quantique.

8Note that δxy is the Dirac delta function, which takes the value 1 if x = y, or 0 otherwise.
9See Wiesner (1969).

10See Wootters and Zurek (1982).
11A matrix U is unitary if it is equal to its conjugate transpose, or adjoint: U = U† = (U�)T .
12See Brassard (1988).
13This is indeed what quantum theory predicts: measurement is destructive in the sense that a quantum state is

changed, and changed permanently.
14See Diffie and Hellman (1976).
15See Welsh (1998).
16See Brassard and Crépeau (1991); Bennett et al. (1992); Brassard et al. (1993).
17See Schneier (1996).
18Ibid.
19See Brassard et al. (1993); Brassard and Crépeau (1991).
20See Mayers (1996).
21See Milner (1989).
22See Hoare (1985).
23See Mauw and Veltink (1993).
24See Holzmann (1991, 2003).
25See Baier et al. (2004).

Chapter 2:

1See Bennett and Brassard (1984).
2See Bennett (1992).
3See Ekert (1991).
4See Brassard and Salvail (1994).
5See Bennett et al. (1988).
6See Brassard and Crépeau (1991); Brassard et al. (1993).
7See Mayers (1996).
8See Wiesner (1969); Bennett and Wiesner (1992).
9See Bennett and Wiesner (1992).

10See Bennett et al. (1993).
11See Cohen-Tannoudji et al. (1977).
12See Shannon (1949).
13Ibid.
14See Wolf (1999); Smart (2003).
15See Gruska (1999).
16Ibid.
17See Bennett and Brassard (1984).
18See Bennett (1992).
19See Ekert (1991).
20See Bouwmeester et al. (2000); Gruska (1999).
21See Gruska (1999); Nielsen and Chuang (2000).
22See Ekert (1991).
23See Bouwmeester et al. (2000).
24See Brassard and Salvail (1994).
25Ibid.
26See Bennett et al. (1988).
27See Wegman and Carter (1981).
28See Elliot (2004).

Notes ❦ 101

29See Bennett et al. (1988).
30See Yamamoto (2004).
31See Wegman and Carter (1981).
32See Mayers (2001).
33See Bennett and Wiesner (1992).

Chapter 3:

1See Huth and Ryan (2000).
2See Holzmann (2003).
3See Kwiatkowska et al. (2004).
4See Hoare (1985).
5See Ryan et al. (2001).
6Ibid.
7See Milner (1999).
8See Gay and Nagarajan (2002).
9See Nagarajan and Gay (2004).

10See Holzmann (1991).
11See Holzmann (2003) loc. cit.
12See Holzmann (1991) loc. cit.
13See Baier et al. (2004).
14See Papanikolaou (2004).
15See Holzmann (2003) loc. cit.
16The reason for delving into this issue is that the spin and prism tools, used for analysis of quantum protocols in

this work, use entirely different logics for property specification.
17See Vardi (2001).
18Ibid.
19See Holzmann (2003) loc. cit.
20Ibid.
21See Kwiatkowska et al. loc. cit.
22See Holzmann (2003, pp. 137—138) loc. cit.
23See Baier et al. (1997, 2004).
24See Jonsson et al. (2001).
25See Nelson (1995).
26See Monniaux (2004).
27See Emerson (1990).
28See Ciesinski and Größer (2004).
29See Bub (2002).
30Note that the symbols ψ1, . . . ψ4 are used instead of the full ket vectors they denote to lighten the notation.
31See Cohen-Tannoudji et al. (1977).
32See Caves et al. (2002).
33See Parker et al. (2004).

Chapter 4:

1See Gay and Nagarajan (2002); Nagarajan and Gay (2004).
2See Yamamoto (2004).
3This algorithm is available for use directly within the plotting program GnuPlot.
4See Holzmann (2003).
5See Gruska (1999); Mayers (2001).

Chapter 5:

1See Bérard et al. (1999); Ryan et al. (2001); Holzmann (1991, 2003); Mauw and Veltink (1993).
2The model checker in question is mck ("Model Checking Knowledge").

102 ❦ Notes

3See Hoare (1985).
4See Milner (1989).
5See Ponse et al. (2001).
6See Black and Lane (2004).
7See Papanikolaou (2004).
8See Nagarajan and Gay (2004).
9See Milner (1999).

10See Nagarajan and Gay (2004).
11Private communication.
12See Nagarajan and Gay (2004).
13See Lalire and Jorrand (2004).
14See Meyden and Patra (2003).
15See Selinger (2004).
16See Ömer (1998).
17See Sanders and Zuliani (2000).
18See Papanikolaou (2004).
19See Gruska (1999).
20See Baier et al. (2004).
21See http://web.informatik.uni-bonn.de/I/baier/projectpages/PROBUSM/.

Chapter 6:

1See Fitzgerald (2004).

Bibliography

Abadi, M. and A. Gordon (1999). A calculus for cryptographic protocols: The spi–calculus. Infor-
mation and Computation 148, 1–70.

Baier, C., F. Ciesinski, and M. Größer (2004). probmela: A modeling language for communicating
probabilistic processes. In Proc. memocode 04. ieee cs Press.

Baier, C., E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan (1997). Symbolic
model checking for probabilistic processes. In Proc. 24th International Colloquium on Automata,
Languages and Programming (ICALP’97), Volume 1256 of Lecture Notes in Computer Science, pp.
430–440.

Bennett, C. (1992). Quantum cryptography using any two nonorthogonal states. Physical Review
Letters 68(21), 3121—3124.

Bennett, C., G. Brassard, S. Breidbart, and S. Wiesner (1982). Quantum cryptography, or unforge-
able subway tokens. In Advances in Cryptology — Proceedings of crypto ’82. Plenum Press.

Bennett, C. H. and G. Brassard (1984, December). Quantum cryptography: Public key distribu-
tion and coin tossing. In Proceedings of International Conference on Computers, Systems and Signal
Processing.

Bennett, C. H., G. Brassard, C. Crepeau, R. Jozsa, A. Peres, and W. K. Wootters (1993). Teleporting
an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Physical
Review Letters 70, 1895–1899.

Bennett, C. H., G. Brassard, C. Crépeau, and M.-H. Skubiszewska (1992). Practical quantum obliv-
ious transfer. In Proceedings of the 11th Annual International Cryptology Conference on Advances in
Cryptology, pp. 351–366. Springer–Verlag.

Bennett, C. H., G. Brassard, and J.-M. Robert (1988). Privacy amplification by public discussion.
siam J. Comput. 17(2), 210–229.

103

104 ❦ Bibliography

Bennett, C. H. and S. J. Wiesner (1992). Communication via one- and two-particle operators on
Einstein–Podolsky–Rosen states. Physical Review Letters 69(20), 2881—2884.

Bérard, B., M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci, P. Schnoebelen, and P. McKen-
zie (1999). Systems and Software Verification: Model–Checking Techniques and Tools. Springer–
Verlag. Updated version of the French language edition: “Verification de logiciels. Techniques
et outils du model–checking” coordonné par Philippe Schnoebelen, Copyright Vuibert, Paris,
1999.

Black, P. E. and A. W. Lane (2004). Modeling quantum information systems. Unpublished.

Bouwmeester, D., A. Ekert, and A. Zeilinger (Eds.) (2000). The Physics of Quantum Information.
Springer–Verlag.

Brassard, G. (1988). Modern Cryptology: A Tutorial, Volume 325 of Lecture Notes in Computer Science.
Springer–Verlag.

Brassard, G. and C. Crépeau (1991). Quantum bit commitment and coin tossing protocols. In
A. Menezes and S. Vanstone (Eds.), Advances in Cryptology — crypto ’90, pp. 49—61. Springer–
Verlag. Volume 537 of Lecture Notes in Computer Science.

Brassard, G., C. Crépeau, R. Josza, and D. Langlois (1993). A quantum bit commitment scheme
provably unbreakable by both parties. In Proceedings of 34th Annual ieee Symposium on the
Foundations of Computer Science, pp. 362—371.

Brassard, G. and L. Salvail (1994). Secret-key reconciliation by public discussion. In Workshop on
the Theory and Application of Cryptographic Techniques (EUROCRYPT ’93), pp. 410–423. Springer–
Verlag.

Bub, J. (2002). Quantum entanglement and information. In The Stanford Encyclopedia of Philos-
ophy, available at http://plato.stanford.edu/archives/win2002/entries/qt-entangle/.

Caves, C. M., C. A. Fuchs, and R. Schack (2002). Quantum probabilities as Bayesian probabilities.
Physical Review A 65, 022305–1 to 022305–6.

Ciesinski, F. and M. Größer (2004). On Probabilistic Computation Tree Logic. To appear.

Cohen-Tannoudji, C., B. Diu, and F. Laloë (1977). Quantum Mechanics, Volume I. Wiley–
Interscience.

Diffie, W. and M. E. Hellman (1976). New directions in cryptography. ieee Transactions on Infor-
mation Theory IT–22(6), 644—654.

Ekert, A. (1991). Quantum cryptography based on Bell’s theorem. Physical Review Letters 67(6),
661—663.

Elliot, C. (2004, July/August). Quantum cryptography. ieee Security & Privacy Magazine 2(4),
57—61.

Emerson, E. A. (1990). Temporal and modal logic. Volume B: Formal Models and Semantics, pp.
995–1072. MIT Press.

Bibliography ❦ 105

Feynman, R. P. (1999). There’s plenty of room at the bottom. In A. Hey (Ed.), Feynman and
Computation: Exploring the Limits of Computers, Chapter 7, pp. 63—76. Perseus Books.

Fitzgerald, D. (2004). Quantum qudit simulation. Master’s thesis, National University of Ireland,
Galway. M.Sc. in Software Design and Development, Supervisor: Dr. Michael McGettrick.

Gay, S. and R. Nagarajan (2002). Formal verification of quantum protocols. Available from e–print
archive arXiv.org (record: quant-ph/0203086).

Gisin, N., G. Ribordy, W. Tittel, and H. Zbinden (2002). Quantum cryptography. Reviews of Modern
Physics 74(1), 145—195.

Gruska, J. (1999). Quantum Computing. McGraw–Hill International.

Hailpern, B. T. (1982). Verifying Concurrent Processes Using Temporal Logic, Volume 129 of Lecture
Notes in Computer Science. Springer–Verlag.

Hamming, R. (1986). Coding and Information Theory (2nd ed.). Prentice–Hall.

Hoare, C. A. R. (1985). Communicating Sequential Processes. Prentice–Hall.

Holzmann, G. (1991). The Design and Validation of Computer Protocols. Prentice–Hall.

Holzmann, G. (2003). The SPIN Model Checker: Primer and Reference Manual. Pearson Education.

Huth, M. R. and M. D. Ryan (2000). Logic in Computer Science: Modelling and Reasoning About
Systems (1st ed.). Cambridge University Press.

Jonsson, B., W. Yi, and K. G. Larsen (2001). Probabilistic extensions of process algebras. In J. A.
Bergstra, A. Ponse, and S. A. Smolka (Eds.), Handbook of Process Algebra. Elsevier Science.

Kwiatkowska, M., G. Norman, and D. Parker (2004). Modelling and verification of probabilistic
systems. In P. Panangaden and F. V. Breugel (Eds.), Mathematical Techniques for Analyzing Con-
current and Probabilistic Systems. American Mathematical Society. Volume 23 of crm Monograph
Series.

Lalire, M. and P. Jorrand (2004, June). A process algebraic approach to concurrent and distributed
quantum computation: Operational semantics. In Proceedings of The 2nd International Workshop
on Quantum Programming Languages, pp. 109—126. Turku Centre for Computer Science (TUCS).

Landauer, R. (1999). Information is inevitably physical. In A. Hey (Ed.), Feynman and Computation:
Exploring the Limits of Computers. Perseus Books.

Lo, H.-K. (2003). Method for decoupling error correction from privacy amplification. New Journal
of Physics 5, 36.1—36.24.

Lomonaco, Jr., S. J. (1998). A quick glance at quantum cryptography. Available from e–print
archive arXiv.org (record: quant-ph/9811056).

Mauw, S. and G. Veltink (1993). Algebraic Specification of Communication Protocols, Volume 36 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press.

106 ❦ Bibliography

Mayers, D. (1996). Unconditionally secure quantum bit commitment is impossible. In Fourth
Workshop on Physics and Computation — PhysComp ’96. Springer–Verlag.

Mayers, D. (2001). Unconditional security in quantum cryptography. Journal of the acm 48(3),
351—406.

Meyden, R. and M. Patra (2003). Knowledge in quantum systems (Extended Abstract). In Proc.
Conf. On Theoretical Aspects of Rationality and Knowledge, pp. 104–117. acm Press.

Milner, R. (1989). Communication and Concurrency. Prentice–Hall.

Milner, R. (1999). Communicating and Mobile Systems: The π–Calculus. Cambridge University Press.

Molotkov, S. N. (2004). Integration of quantum cryptography into fiber-optic telecommunication
systems. jetp Letters 79(11), 559—570.

Monniaux, D. (2004). Abstract interpretation of programs as Markov decision processes. Available
at http://www.di.ens.fr/vmonniaux.

Nagarajan, R. and S. Gay (2004, June). Communicating quantum processes. In Proceedings of
The 2nd International Workshop on Quantum Programming Languages. Turku Centre for Computer
Science (TUCS).

Nelson, B. L. (1995). Stochastic Modeling: Analysis and Simulation. McGraw–Hill.

Nielsen, M. A. and I. L. Chuang (2000). Quantum Computation and Quantum Information. Cam-
bridge University Press.

Ömer, B. (1998). A procedural formalism for quantum computing. Master’s thesis, Department
of Theoretical Physics, University of Vienna.

Papanikolaou, N. (2004). qSpec: A programming language for quantum communication systems
design. In Proceedings of PREP2004 Postgraduate Research Conference in Electronics, Photonics,
Communications & Networks, and Computing Science. epsrc.

Parker, D., G. Norman, and M. Kwiatkowska (2004, February). prism 2.0 users’ guide. Available
at http://www.cs.bham.ac.uk/vdxp/prism.

Pnueli, A. (1977). The temporal logic of programs. In Proceedings of the 18th ieee Symposium on
Foundations of Computer Science. ieee Press.

Ponse, A., S. A. Smolka, and J. A. Bergstra (2001). Handbook of Process Algebra. Elsevier Science
Inc.

Rescher, N. and A. Urquhart (1971). Temporal Logic, Volume 3 of Library of Exact Philosophy.
Springer–Verlag.

Rieffel, E. and W. Polak (2000). An introduction to quantum computing for non–physicists. acm

Computing Surveys 32(3), 300—335.

Ryan, P., S. Schneider, M. Goldsmith, G. Lowe, and B. Roscoe (2001). Modelling and Analysis of
Security Protocols. Pearson Education.

Bibliography ❦ 107

Sanders, J. and P. Zuliani (2000). Quantum programming. In Mathematics of Program Construction,
pp. 80—99. Springer. Volume 1837 of Lecture Notes in Computer Science.

Schneier, B. (1996). Applied Cryptography (2nd ed.). Wiley.

Selinger, P. (2004). Towards a quantum programming language. Mathematical Structures in Com-
puter Science 14(4), 527–586.

Shannon, C. E. (1949). Communication theory of secrecy systems. Bell Systems Technical Jour-
nal 28(4), 656—715.

Smart, N. (2003). Cryptography: An Introduction. McGraw–Hill Education (UK).

Stewart, I. (1997). Does God Play Dice? Penguin Books.

Stirling, C. (2001). Modal and Temporal Properties of Processes. Texts in Computer Science. Springer–
Verlag.

Van der Meyden, R. and M. Patra (2003). A logic for probability in quantum systems. In M. Baaz
and J. A. Makowsky (Eds.), Computer Science Logic, 17th International Workshop, csl 2003, 12th
Annual Conference of the eacsl, and 8th Kurt Gödel Colloquium, kgc 2003, Vienna, Austria, Au-
gust 25-30, 2003, Proceedings, Volume 2803 of Lecture Notes in Computer Science, pp. 427—440.
Springer.

Vardi, M. Y. (2001). Branching vs. linear time: Final showdown. In Proceedings of the 7th Inter-
national Conference on Tools and Algorithms for the Construction and Analysis of Systems, pp. 1–22.
Springer–Verlag.

Wegman, M. and J. Carter (1981). New hash functions and their use in authentication and set
equality. J. Comput. Syst. Sci. 22, 265—279.

Welsh, D. (1998). Codes and Cryptography. Clarendon Press.

Wiedemann, D. (1987). Quantum cryptography. Sigact News 18(2), 48—51.

Wiesner, S. (1983 (original manuscript 1969)). Conjugate coding. Sigact News 15, 78—88.

Williams, C. P. and S. H. Clearwater (1998). Explorations in quantum computing. TELOS.

Williams, C. P. and S. H. Clearwater (2000). Ultimate Zero and One: Computing at the Quantum
Frontier. Springer–Verlag.

Wolf, S. (1999). Unconditional security in cryptography. In Modern Cryptography in Theory and
Practice, Proceedings of 1998 Summer School in Cryptology and Data Security. Springer–Verlag. Vol-
ume 1561 of Lecture Notes in Computer Science.

Wootters, W. K. and W. H. Zurek (1982). A single quantum cannot be cloned. Nature 299, 802—803.

Wyner, A. (1975). The wire–tap channel. The Bell System Technical Journal 54(8), 1355—1385.

Yamamoto, Y. (2004). Physics of quantum information: Lecture notes. NII Quantum Information
Science Group.

