Formal Analysis and Verification of Systems
Security Models with Gnosis

Brian Monahan and Nick Papanikolaou
Cloud and Security Lab, HP Labs
{brian .monahan,nick. papanikolaou}@hp .com

Abstract—Emergent context-dependent non-functional re-
quirements, such as those involving systems security activities
and processes are, almost by definition, difficult to assess for
their adequacy. One cannot easily anticipate and measure the
effectiveness of systems defences in advance of actual field
deployment until it is, of course, too late and the damage has
been done. Our approach to security requirements assessment
involves explicitly building systems security models using Gnosis,
a process modelling simulation language developed at HP Labs.
Gnosis models capture security situations which typically include
aspects of the threat environment. In this paper we present the
core aspects of this approach and discuss our latest work on
developing explicit-state model checking of properties of multiple
simulation runs.

I. INTRODUCTION

One of the greatest challenges in modern computing is that
of understanding and reasoning about complex system be-
haviour. Simulation is one of the most widely used approaches
for dealing with this challenge, and numerous different sim-
ulation techniques and tools have been developed for a wide
range of domains. The effectiveness of any given simulation
depends on the accuracy and amount of detail contained in
the model used to produce that simulation; therefore, a great
deal of skill and experience is required to develop simulations
which actually provide meaningful information and insight
into the possible behaviours of a system. Our focus here is
not on the development of such models, but rather on the
information that can be gleaned about system behaviour from
the results of several simulations, even when there is very little
(or even no) knowledge of the original model used to produce
them.

We argue that one can extract meaningful finite-state models
from the results of simulations, which can reveal patterns
and structure that is not necessarily obvious in the original
model used for these simulations. This claim is of fundamental
importance, as it means that simulations may reveal more
information about a system than one might think; furthermore,
the techniques we present here can be generalised so as
to apply to any other experimental setup in which system
behaviour is contained in ordered logs or timelines, and in
which it is desirable to detect common patterns and underlying
structure.

The types of simulations for which the techniques we
present in this report find greatest utility are those where
there is inherent non-deterministic behaviour, and also explicit
specification of the probabilities of particular actions/events

occurring. It is these types of simulations which give several
different, and hence interesting, results (specifically, they give
rise to different traces; this term is defined below). In order
to account for the probabilities of different action patterns in
simulations, our technique for extracting such patterns assigns
explicit probabilities to actions and events.

Emergent context-dependent non-functional requirements,
such as those for systems security activities and processes
are, almost by definition, difficult to assess for their adequacy.
One cannot easily anticipate and measure the effectiveness
of system defences in advance of actual field deployment -
until it is of course too late and the damage has been done.
Our approach to security requirements assessment involves
explicitly building systems security models using the Gnosis
process modelling simulation language, developed at HP Labs,
to capture security situations which typically include aspects
of the threat environment. Such models are typically highly
concurrent and naturally stochastic. Subsequent experimental
simulation then allows us to empirically explore a range of
different scenarios. We do this by performing multiple runs
of the "what-if” alternatives that arise from discretely varying
particular parameters of the model. Statistical analysis of those
multiple runs for each scenario can then be performed to
help find out what combinations of options there might be
that improve overall security utility. The downside is that this
approach often produces a very significant volume of data
that is difficult to analyze and understand in security terms.
Our paper briefly discusses some work-in-progress towards
addressing this issue, essentially by extracting smaller, more
compact process models that characterize certain particular
features. The anticipated advantages of our approach would
be empirically derived models that are necessarily simpler
than the original simulation and potentially more tractable
for analysis using, for example, probabilistic model-checking
techniques.

A. Related Work

The current Gnosis simulation framework does not have
support for formal methods or verification in its current form.
We are conscious of the relevance and linkages between our
work and related work on automata chains and process mining.

In the context of resource-based logics such as SCRP
(Synchronous Calculus of Resource and Process — see [7],
[8]), Matthew Collinson developed some preliminary tools for
basic resource-oriented model checking of Core Gnosis.

The authors Grastien, Cordier, Largouét [9] have devised
a formal theory of automata chaining, namely, ways to join
together automata with common states. This is related, but
much more extensive, to our method of joining together the
automata extracted from different simulation runs. In our
approach, we match state labels from different runs and only
identify them if their labels are identical; an area for future
work is to investigate more sophisticated ways of merging au-
tomata together, particularly for special or corner cases where
additional transitions (often just e-transitions) are needed to
merge more complex automata.

We are aware of related work by Van der Aalst and others on
process mining [11]. The key difference between our approach
and that advocated by the creators of process mining lies in
their preference for the use of Petri net models rather than
finite-state automata. However, we note that it is possible to
convert Petri net models to automata, and that in [11] a tool is
described that can be used to model-check LTL formulae over
process models extracted from logs. Certainly the objectives
of process mining are very much in alignment with the ideas
presented here, and we envisage carrying over relevant ideas
into our work.

II. THE GNOSIS SIMULATION FRAMEWORK

Gnosis is a process modeling and simulation language
developed within HP Labs to abstractly model systems se-
curity in operational terms at a variety of different scales
and contexts. Our general starting point is that security is a
process or activity that can involve a multitude of significant
characteristics and interactions. Typically, these interaction
arise between the modelled elements of a systems context in-
volving people, process and technology. Mathematically, such
aspects are characterized within our framework incorporating
notions of Process, Resource, Location, and Environment.
For us, a modelled system may equally represent a large-
scale organizational business process, a cluster of back-end
database servers, or some composite of software components.
Abstractly, their principle behaviours may all be very similar,
meaning that the models would also possess similar form and
structure.

Besides including conventional means for data represen-
tation and manipulation, Gnosis includes constructs for de-
scribing processes, functions, resources, and locations. The
resulting models are thus directly executable in terms of
discrete process simulation. Gnosis also provides a good
degree of stochastic capability; events may be drawn from
a stock of probability distributions including uniform, normal,
negative exponential, and Weibull; for example, these allow
us to compactly model stochastic queuing and Markov chain
process phenomena. A brief illustration of Gnosis is given in
the appendix.

A semantics of (Core) Gnosis is discussed and developed
in terms of the process calculus SCRP mentioned above (See
[7], [8] for further details).

A. Gnosis traces

Each run of the Gnosis simulator on an input model
model.gn will produce two files of interest, the trace

file model.tr and corresponding dump file model.csv.
In order to extract meaningful information from a run of
model.gn, we need to link together the information found
in these two files; in particular, we need to know, for each
step in the trace (or at least specified steps in the trace; where
each step assumed to appear as a single printed line), what the
corresponding values are of all the variables in the model —
namely, the system state.

A naive approach to linking trace information with the states
of variables at different points during execution would be to
include explicit print statements outputting the values of
variables in different parts of the original model model.gn.
However, our approach here is to extract information from
simulation runs without modifying the source model.

ITII. EXTRACTING EMERGENT STRUCTURE FROM GNOSIS
TRACES

We have conceived a method of analysing essential proper-
ties of multiple runs of a simulation model, particularly in the
context of the Gnosis modelling and simulation framework.
Our method extracts information from the output of each
simulation run, namely information about state changes, and
constructs a graph corresponding to a finite state automaton
with a simple state transition function. The graphs from
multiple runs can be combined into one bigger automaton, and
this latter construction is a particularly useful representation of
characteristic behaviours in the original model. The automata
produced by the procedure are amenable to subsequent anal-
ysis and reasoning via model-checking techniques.

Our method presupposes the existence of:

e a simulation model M (which includes statements that

produce observable outputs when run),

e alist L = wvy,vy,...,v; of “watch variables” (which
are variables in the model whose state changes produce
observable output),

« a simulator (in our experiments we have been focusing
on the Gnosis tool), and

« a means of running it repeatedly on the simulation model
to produce “dump files” (containing printouts of the
system state at discrete time steps in a trace).

The method itself only makes use of the output of Gnosis
when the model M is simulated; in particular our solution just
processes the dump files produced. Let D = d;,ds,...,d,
denote the set of dump files generated by running Gnosis n
times on model M. In the case of Gnosis, in order to run the
algorithms presented in this section we need to make use of
both execution traces and dump files, the latter being listings
of the states of variables in a model at specified time instants
in a particular run.

The algorithm in this section extracts state changes from a
single simulation run and produces a graph consisting of these
changes.

The method processes each trace t; where (1 < i < n), as
described in Figure 1.

IV. APPLICATIONS AND FUTURE WORK

The advantages of this approach are manifold. First, Gnosis
simulation models tend to be extremely large and complex.

"
/
/

N
i
X

\

)

/

TEEE® K

\

il

|
/
G

Fig. 1. Processing a trace from a single simulation run to generate an
automaton. In the example, the set of watch variables is {v2,v4} and no
filter/formula has been applied.

Algorithm 1 process_single_run(t;, W): The algo-
rithm for processing a single simulation run.

1: for all lines in the file ¢; do

2: Initialize, for all i, currentstatelv;] < statelvg].

3 for all watch variables vy,...,v;,...,vx € W do

4 if statelv;] # currentstate[v;] then

5 Add transition currentstate[v;] = state[v;] to
graph/automaton

6: currentstatelv;] < state[v;]

7: end if

8: end for

9: end for

10: Assemble the list of all state changes and construct a di-
rected graph GG; whose nodes are labelled by the values of
v1, Vg, ..., U, and whose edges correspond to transitions.

Identifying entire regions of Gnosis models with a single state
descriptor can be extremely useful in practice, as it allows the
user to abstract away from many details; in fact, the finite-state
automata generated by our technique can be easily visualised
and this would surely assist in the human understanding of
any Gnosis model.

So the first great advantage of our method is the conciseness
it provides in relation to existing techniques for understanding
Gnosis models. The most important advantage is that the
method paves the way for model checking of Gnosis models,
or parts thereof. Model checking is a well-established means
of gaining assurance and confidence in the correctness of
systems, and most importantly it is useful for automatically
detecting conceptual flaws or errors in system designs. We
note here that in order for an analysis using our method to
be truly beneficial, the initial Gnosis simulation model has to
be a very accurate representation of the real-world problem
under consideration. Our method creates an abstraction of an
existing model, so there is always the danger of obtaining
overly general conclusions or results that are divorced from
important aspects of the real-world system or problem under
consideration. Despite the above caveat, we believe that our
method of analysis can bring significant benefits if combined
with a suitable model-checking algorithm and a suitable logic
for specifying properties of multiple runs of models.

We envisage a number of applications of these techniques in
the context of security analytics and in the analysis of security
properties of complex, concurrent system models. Here are
some of these:

o Analysis of security logs of cloud infrastructures
o Detection of patterns of malicious behaviour in system
behaviour

o Comparison of attacker models

V. CONCLUSIONS

In this paper we have presented a method, and experi-
mental implementation, for extracting emergent structure from
system simulation models. We have documented algorithms
for extracting state changes from individual simulation runs,
and combining these state changes together when processing
multiple runs. The purpose of this work is to obtain meaningful
representations of complex simulation models and we envisage
many different practical applications in future work.

REFERENCES
[1

2

—

Christel Baier and Joost-Pieter Katoen. Principles of Model Checking.
MIT Press, 2008.

Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms
and tools. In Jorg Desel, Wolfgang Reisig, and Grzegorz Rozenberg,
editors, Lectures on Concurrency and Petri Nets, Advances in Petri Nets,
volume 3098, pages 87—124. Springer-Verlag, 2004.

B. Berard, M. Bidoit, A. Finkel, F. Laroussinie, A. Petit, L. Petrucci,
P. Schnoebelen, and P. McKenzie. Systems and Software Verification:
Model-Checking Techniques and Tools. Springer, 2001.

Y. Beres, J. Griffin, S. Shiu, M. Heitman, D. Markle, and P. Ventura.
Analysing the performance of security solutions to reduce vulnerability
exposure window. In Proceedings of the 2008 Annual Computer
Security Applications Conference, pages 33—42. IEEE Computer Society
Conference Publishing Services (CPS), 2008.

[5]1 E. M. Clarke and P. Zuliani. Statistical model checking for cyber-
physical systems. In ATVA 2011: 9th International Symposium on
Automated Technology for Verification and Analysis, volume 6996 of
Lecture Notes in Computer Science, pages 1-12, 2011.

Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking.
MIT Press, 1999.

Matthew Collinson, Brian Monahan, and David Pym. Semantics
for structured systems modelling and simulation. In Proceedings of
Simutools 2010. ACM Digital Library, 2010. ISBN: 78-963-9799-87-5.
Matthew Collinson, Brian Monahan, and David Pym. A Discipline of
Mathematical Systems Modelling. College Publications, 2012.

[9]1 Alban Grastien, Marie-Odile Cordier, and Christine Largouét. Incre-
mental diagnosis of discrete-event systems. In Sixteenth International
Workshop on Principles of Diagnosis (DX-05), 2005.

M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In G. Gopalakrishnan and S. Qadeer,
editors, Proc. 23rd International Conference on Computer Aided Ver-
ification (CAV’11), volume 6806 of LNCS, pages 585-591. Springer,
2011.

Wil M. P. Van Der Aalst. Process Mining. Springer Verlag, 2011.

—

[3

=

[4

=

[6

—

[7

—

[8

[t}

(10]

(11]

APPENDIX
A SIMPLE GNOSIS EXAMPLE

This appendix contains a very simple example of a Gnosis
model, given purely to illustrate some basics of the language
and to give some sense of what a model might contain. The
example concerns just the supply part of a systems patching
scenario - this includes patch generation, patch testing and
patch application. A much more involved account of systems
patching and vulnerability management can be found in [4].

The initial section of a model describes the parameters and
stochastic variates that it uses.

—-— Title : A mini systems-patching example
—-— Seed : 123456789
param runTime = 1000

param avgPatchRate = 10.6
param patchRate = negexp (avgPatchRate)

param lowerApplyTime = 3.6
param upperApplyTime = 7.2
param applyTime =
uniform (lowerApplyTime, upperApplyTime)

param avgTest = 23.5
param testRange = 7.3
param testTime =
uniform (avgTest - testRange, avgTest + testRange)

param probGoodPatch = 0.8
param patchOK = bernoulli (probGoodPatch)

param testers = 3
param patchers = 5
share testStaff (testers); share patchStaff (patchers)

var patchesCreated = 0;
var badPatches = 0;

var patchesTestedOK = 0
var patchesApplied = 0

bin newPatches; bin patchApply

Next, various processes that represent systems activities are
defined - note that there is a “measure” process which period-
ically outputs ’"dump’ information about the values of variables
and the use of resources.

process generatePatch {
launch generatePatch after patchRate
put 1 into newPatches
patchesCreated += 1

}

process checkPatch {
repeat {
get 1 from newPatches

claim 1 testStaff;
hold (testTime);

if [patchOK > 0] {
patchesTestedOK += 1
put 1 into patchApply

}

or else

badPatches += 1

}

release 1 testStaff

}
}

process applyPatch {
repeat {
get 1 from patchApply

claim 2 patchsStaff;
hold (applyTime) ;
release 2 patchStaff

patchesApplied += 1

}
}

process measure {
repeat {
hold (10)
dump ()

// output values of variables

Finally, the model launches instances of these processes and
performs the simulation for a defined duration, as specified by
runTime.

launch generatePatch
do 2 { launch checkPatch }
do 3 { launch applyPatch }

launch measure // capture measurements

hold (runTime) // let processes run for specified time
close // close the simulation

When models are simulated, a CSV file is produced containing
data values for variables, together with an explicit trace file, a
fragment of which is reproduced here:

0 | *MAIN* ShareDefn: creating resource ’testStaff’ with 3

0 | *MAIN* - ShareDefn: creating resource ’patchStaff’ with 5

0 | *MAIN* - CountBinDefn: creating bin of initial size 0 named as 'newPatches’

0 | *MAIN* - CountBinDefn: creating bin of initial size 0 named as ’patchApply’

0 | *MAINx - Launching process ’generatePatch.l’ (generatePatch) at time 0

0 | *MAINx - Launching process ’checkPatch.1l’ (checkPatch) at time 0

0 | *MAINx* - Launching process ’checkPatch.2’ (checkPatch) at time 0

0 | *MAIN= - Launching process ’applyPatch.l’ (applyPatch) at time 0

0 | *MAIN= - Launching process ’applyPatch.2’ (applyPatch) at time 0

0 | «MAIN=* - Launching process ’applyPatch.3’ (applyPatch) at time 0

0 | «MAIN* - Launching process ‘measure.l’ (measure) at time 0

0 | *MAINx - Hold issued for 1000

0 | generatePatch.l - Launching process ’generatePatch.2’ (generatePatch) at time 14.:
0 | generatePatch.l - PutCountBin: putting 1 units into bin ’newPatches’

0 | checkPatch.l - GetCountBin: taking 1 units from bin ’newPatches’

982.278359198 applyPatch.3 - Hold issued for 5.54678759405

987.751063231 generatePatch.71l - Launching process ’generatePatch.72’ (generatePatch) at time 9
987.751063231 generatePatch.71 - PutCountBin: putting 1 units into bin ’‘newPatches’
987.751063231 checkPatch.2 - GetCountBin: taking 1 units from bin 'newPatches’

987.751063231 checkPatch.2 - ClaimShare: claiming 1 units for resource ’testStaff’

987.751063231
987.825146792
990

992.939507824
992.939507824
995.179446215
995.179446215
996.399056487

checkPatch.2 - Hold issued for 19.5354026393

measure.l - Hold issued for 10

checkPatch.l - PutCountBin: putting 1 units into bin ’patchApply’

996.399056487 checkPatch.l - ReleaseShare: releasing 1 units for resource /testStaff’
996.399056487 checkPatch.l - GetCountBin: taking 1 units from bin ‘newPatches’
996.399056487 checkPatch.l - ClaimShare: claiming 1 units for resource ’testStaff’
996.399056487 checkPatch.l - Hold issued for 24.9121582659

996.399056487 applyPatch.2 — GetCountBin: taking 1 units from bin /patchApply’
996.399056487 applyPatch.2 - ClaimShare: claiming 2 units for resource ’/patchStaff’
996.399056487 applyPatch.2 - Hold issued for 6.4590931604

1000 *MATIN* - Simulation Closed.

applyPatch.3 - ReleaseShare: releasing 2 units for resource ’patchStaff’

1

generatePatch.72 — Launching process ’generatePatch.73’ (generatePatch) at time 9
generatePatch.72 - PutCountBin: putting 1 units into bin ’newPatches’
generatePatch.73 - Launching process generatePatch.74’ (generatePatch) at time
generatePatch.73 - PutCountBin: putting 1 units into bin ’newPatches’

(

