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Abstract

This paper discusses the use of computer–aided verification as a practical means for analysing
quantum information systems; specifically, the BB84 protocol for quantum key distribution is
examined using this method. This protocol has been shown to be unconditionally secure against
all attacks in an information–theoretic setting, but the relevant security proof requires a thorough
understanding of the formalism of quantum mechanics and is not easily adaptable to practical
scenarios. Our approach is based on probabilistic model–checking; we have used the PRISM model–
checker to show that, as the number of qubits transmitted in BB84 is increased, the amount of valid
information held by an eavesdropper about the transmitted key decreases exponentially. We have
also shown that the probability of detecting the presence of an eavesdropper increases exponentially
with the number of qubits. We do not purport to provide a complete security proof of any kind;
our model is a simple one, and it does not take into account the phases of secret–key reconciliation

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Nagarajan, Papanikolaou, Bowen and Gay

and privacy amplification. The results presented here demonstrate the use of the model–checking
approach in the context of quantum systems.

Key words: quantum cryptography, quantum information, security proof,
probabilistic model checking, PRISM

1 Introduction

That quantum–mechanical phenomena can be effectively exploited for the storage, manip-
ulation and exchange of information is now a widely recognised fact. The whole field of
quantum information poses new challenges for the information theory community and in-
volves several novel applications, especially with respect to cryptology.

Recent interest in quantum cryptography has been stimulated by the observation that
quantum algorithms, such as Shor’s algorithms for integer factorization and discrete log-
arithm [21], threaten the security of classical cryptosystems. A wide range of quantum
cryptographic protocols for key distribution, bit commitment, oblivious transfer and other
problems [3] has been introduced in the last decade or so. Furthermore, the implementation
of quantum cryptographic protocols has turned out to be significantly easier than the im-
plementation of quantum algorithms: although practical quantum computers are still some
way in the future, quantum cryptography has already been demonstrated in non-laboratory
settings [19] and is well on the way to becoming an important practical technology.

Quantum cryptographic protocols are designed with the intention that their security is
guaranteed by the laws of quantum physics. Naturally it is necessary to prove, for any
given protocol, that this is indeed the case. The most notable result in this area is Mayers’
proof [13] of the unconditional security of the quantum key distribution protocol “BB84” [2].
This proof guarantees the security of BB84 in the presence of an attacker who can perform
any operation allowed by quantum physics; hence the security of the protocol will not be
compromised by future developments in quantum computing.

Mayers’ result, and others of the same kind [11,4,12], are extremely important contribu-
tions to the study of quantum cryptography. However, a mathematical proof of security of
a protocol does not in itself guarantee the security of an implemented system which relies on
the protocol. Experience of classical cryptography has shown that, during the progression
from an idealised protocol to an implementation, many security weaknesses can arise. For
example: the system might not correctly implement the desired protocol; there might be
security flaws which only appear at the implementation level and which are not visible at the
level of abstraction used in proofs; problems can also arise at boundaries between systems
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and between components which have different execution models or data representations. We
therefore argue that it is worth analysing quantum cryptographic systems at a level of detail
which is closer to a practical implementation.

Computer scientists have developed a range of techniques and tools for the analysis and
verification of communication systems and protocols. Those particularly relevant to security
analysis are surveyed by Ryan et al. in [20]. This approach has two key features. The first
is the use of formal languages to precisely specify the behaviour of the system and the
properties which it is meant to satisfy. The second is the use of automated software tools
to either verify that a system satisfies a specification or to discover flaws. These features
provide a high degree of confidence in the validity of systems, and the ability to analyse
variations and modifications of a system very easily.

In this paper we present the results of applying the above methodology to the basic
BB84 quantum key distribution protocol. We have carried out an analysis using PRISM 7 ,
a probabilistic model-checking system. Our results confirm some of the properties which
arise from Mayers’ security proof; more significantly, they demonstrate the effectiveness of
the model-checking approach and the ease with which parameters of the system can be
varied. It should be emphasized at the outset that our analysis does not take into account
important aspects of the full BB84 protocol such as secret–key reconciliation and privacy
amplification. Our objective here is only to demonstrate how the model–checking approach
can be applied in the quantum setting. Also, we are restricting the analysis to a specific
type of attack (intercept–resend), assuming noiseless quantum channels. The attacker in
our model does obtain partial information about the final key produced by the protocol,
with a certain probability; we show that this information is negligible, in particular, it
decreases exponentially with the number of qubits transmitted (N). We also show that the
probability that the eavesdropper’s presence is detected (and the protocol aborted) increases
exponentially with N .

Acknowledgements.
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for giving us the opportunity to present this work. We are very grateful to the anonymous
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2 Quantum Key Distribution and Security Criteria

The objective of key distribution is to enable two communicating parties, Alice and Bob,
to agree on a common secret key k ∈ {0, 1}N , N > 0, without sharing any information
initially. Once a common secret key has been established, Alice and Bob can use a symmetric
cryptosystem to exchange messages privately. In a classical (i.e. non–quantum) setting, it
is quite impossible to perform key distribution securely unless assumptions are made about
the enemy’s computational power [8].

7 See http://www.cs.bham.ac.uk/~dxp/prism.
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The use of quantum channels, which cannot be tapped or monitored without causing a
noticeable disturbance, makes unconditionally secure key distribution possible. The presence
of an enemy is made manifest to the users of such channels through an unusually high
error rate. We will now describe the BB84 scheme for quantum key distribution [2], which
uses polarised photons as information carriers. Note that the basic concepts and notation
associated with quantum information are presented briefly in Appendix A.

BB84 assumes that the two legitimate users are linked by two specific channels, which
the enemy also has access to:

(i) a classical, possibly public channel, which may be passively monitored but not tampered
with by the enemy;

(ii) a quantum channel which may be tampered with by an enemy. By its very nature, this
channel prevents passive monitoring.

The first phase of BB84 involves transmissions over the quantum channel, while the second
phase takes place over the classical channel.

Notation 1 The pair of quantum states {|0〉 , |1〉} is the rectilinear basis of the Hilbert space
H2, and is denoted by �.

Notation 2 The pair of quantum states { 1√
2
(|0〉+ |1〉) , 1√

2
(|0〉 − |1〉)} is the diagonal basis

of the Hilbert space H2, and is denoted by �.

Definition 2.1 The encoding function fBB84 : D×B 7→ H2 where D = {0, 1}, B = {�,�}
is defined as follows:

fBB84(0,�) = |0〉 (1)

fBB84(1,�) = |1〉 (2)

fBB84(0,�) =
1√
2

(|0〉+ |1〉) (3)

fBB84(1,�) =
1√
2

(|0〉 − |1〉) (4)

The basic BB84 protocol can be summarised as follows:

(i) First Phase (Quantum Transmissions)
(a) Alice generates a random string of bits d ∈ {0, 1}n, and a random string of bases

b ∈ {�,�}n, where n > N .
(b) Alice places a photon in quantum state |ψi〉 = fBB84(di, bi) for each bit di in d and

bi in b, and sends it to Bob over the quantum channel.
(c) Bob measures each |ψi〉 received, with respect to either � or �, chosen at random.

Bob’s measurements produce a string
−→
d′ ∈ {0, 1}n, while his choices of bases form

−→
b′ ∈ {�,�}n.

(ii) Second Phase (Public Discussion)
(a) For each bit di in d:

Alice sends the value of bi to Bob over the classical channel.
Bob responds by stating whether he used the same basis for measurement. If
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b′i 6= bi, both di and d′i are discarded.
(b) Alice chooses a subset of the remaining bits in d and discloses their values to Bob

over the classical channel. If the result of Bob’s measurements for any of these bits
do not match the values disclosed, eavesdropping is detected and communication
is aborted.

(c) The common secret key,
−→
k ∈ {0, 1}N , is the string of bits remaining in d once the

bits disclosed in step 2(b) are removed.

There are two points to note in order to understand BB84 properly. Firstly, measuring
with the incorrect basis yields a random result, as predicted by quantum theory. Thus, if
Bob chooses the � basis to measure a photon in state |1〉, the classical outcome will be
either 0 or 1 with equal probability; if the � basis was chosen instead, the classical outcome
would be 1 with certainty. Secondly, in step 2b) of the protocol, Alice and Bob perform a
test for eavesdropping. The idea is that, wherever Alice and Bob’s bases are identical (i.e.
b′i = bi), the corresponding bits should match (i.e. d′i = di). If not, an external disturbance
has occurred, and on a noiseless channel this can only be attributed to the presence of an
eavesdropper. For more details, the reader is referred to [8,15].

We turn now to the formal security requirements for BB84. Among other things, a
protocol such as BB84 must ensure that an enemy’s presence is always made manifest to
the legitimate users and that, if a key does result from the procedure, it is unpredictable and
common to both users. But most importantly, the protocol must ensure privacy: an enemy
must not be able to learn the full content of the key. Moreover, even if an enemy is able to
obtain a certain quantity of information v by trying to monitor the classical channel, that
quantity has to be minimal; meanwhile, the enemy’s uncertainty about the key, H(k|v),
must be maximized.

Note that the enemy may obtain certain bits of the final key successfully in this simplified
version of the protocol, and go undetected. For our purposes, partial information gained
by the enemy about the key is considered to be of no use. We have limited our model to
the case where a small number of bits are transmitted by Alice to Bob; increasing the key
length (and hence the number of bits transmitted) increases the probability of detecting the
enemy, as we will show later. If the enemy is indeed detected, the protocol is aborted and
the key is completely discarded. Therefore, the version of the protocol we have described
does not always succeed in producing a final key.

Definition 2.2 The conditional entropy of the key k (of length N) given the “view” v is
defined as:

HN(k|v) = − 1

Pr{N}
∑

k

∑
v

Pr{k, v} log (Pr{k|v})

Formal security requirements are usually expressed in terms of security parameters. For
quantum key distribution, the security parameters are written n and ε. The parameter n is
the number of quantum states transmitted, while ε denotes collectively the tolerated error
rate, the number of bits used to test for eavesdropping, and related quantities [13]. We use
the parameter n instead of the key length N , as these are assumed to be linearly related.
For instance, the value of H(k|v) is some function of n and ε: H(k|v) = ϕ(n, ε). The proof

5



Nagarajan, Papanikolaou, Bowen and Gay

[13] stipulates that H(k|v) should be exponentially small in n and ε. Formally,

ϕ(n, ε) 6 c · e−gn (5)

lim
n→∞

ϕ(n, ε) = 0 (6)

noting that the choice of n over N as the parameter only changes the value of the constant g,
and not the functional relationship. We will demonstrate later for BB84 that, the probability
that an enemy succeeds in obtaining more than n

2
key bits correctly is a function of the form

(5).

Mayers’ security proof of BB84 formalises the notion of privacy by defining a quantum
key distribution protocol as “f–private,” if, for every strategy adopted by an enemy, the
average of the quantity N−H(k|v) is less than or equal to some constant f . This definition
of privacy merely requires the key to be uniformly distributed, when the key length N
is known. A more conventional privacy definition would have required that the mutual
information I(k,v) be less than or equal to κ, but this is not entirely satisfactory [13].

The notion of privacy adopted by Mayers is stronger than ours, since for our purposes
we consider the protocol to be secure even if some (exponentially small) valid information
about the final key is leaked to the enemy. This is far from what is required for a fully
general security proof (whose feasibility clearly depends on which notion of “privacy” or
“security” is adopted), and the version of BB84 we are modelling here is a simplified one.
Indeed, the version we are considering here fails to produce a secret key when an enemy is
detected. If secret–key reconciliation and privacy amplification procedures are added to the
protocol being considered here, then the protocol will be capable of producing a secret key
even in the presence of a detected enemy.

3 Model Checking Techniques and the PRISM Tool

The theoretical proof of BB84’s security is a significant and valuable result. However, to
prove a similar result for a different scheme or cryptographic task is far from trivial and
is likely to involve new, ever more specialised derivations. A more flexible approach for
analyzing the security of quantum cryptographic protocols is clearly desirable. Manufac-
turers of commercial quantum cryptographic systems [14], for instance, require efficient and
rigorous methods for design and testing. A suitable approach should allow for modelling
implementation–level details and even minor protocol variations with relative ease. We be-
lieve that model–checking is such an approach, and we will demonstrate its application to
BB84.

PRISM (an acronym for probabilistic symbolic model checker) is a tool designed for
modelling and validating systems which exhibit probabilistic behaviour. Whereas a logical
model–checker, such as SPIN [9], only states whether a system model σ satisfies a temporal
formula Φ, a tool such as PRISM computes the probability with which such a formula is
satisfied, i.e. the value of Pσ,Φ = Pr{σ |= Φ} for given σ and Φ. The models catered
for by PRISM may incorporate specific probabilities for various behaviors and so may the
formulas used for verification. Probabilistic models and PRISM–like tools find applications
in numerous areas of computer science where random behaviour is involved. Oft–cited
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applications are randomized algorithms, real–time systems and Monte Carlo simulation.
The application of probabilistic model–checking to quantum systems is entirely appropriate,
since quantum phenomena are inherently described by random processes; to reason about
such phenomena one must account for this.

PRISM allows models to be parameterised: σ = σ(u1, . . . , uk). Thus the probability
Pr{σ |= Φ} may be computed for different values of u1, . . . , uk; this is termed an experiment.
By varying one parameter at a time, it is possible to produce a meaningful plot of this
quantity’s variation.

PRISM uses a built–in specification language based on Alur and Henzinger’s Reactive
Modules formalism (see [10,18]). Using this language the user can describe probabilistic
behaviour. Internally, a PRISM model is represented by a probabilistic transition system.
In such a system, each step in a computation is represented by a move, or transition, from
a particular state s to a distribution π of successor states [18].

The probabilistic temporal logic PCTL [5] is used as the principal means for defining
properties of systems modelled in PRISM. It suffices for our purposes to remind the reader
of the meaning of the operator U , known as “unbounded until”. The formula Φ1 U Φ2

expresses the fact that Φ1 holds continuously from the current state onward, until eventually
Φ2 becomes true. The PRISM property P > 1[Φ1 U Φ2] states that the formula Φ1 U Φ2

is true with certainty, i.e. with a probability of unity; we use PRISM to check whether such
a property holds in a given model.

4 Analysis of BB84 using PRISM

We have built a model of BB84 for use with PRISM. It is not possible to present the source
code for this model here, due to space limitations; however, the full source code is available
online 8 , and is discussed extensively in [17].

A system description for PRISM contains definitions of modules, each module represent-
ing a component of the system. In our description of BB84, there is a module for each party
involved in the protocol, and a module representing the quantum channel. Each module has
a set of local variables and a sequence of actions to perform; an action typically takes one
of the following two forms:

[s] g → (v1 := val1); (7)

[s] g → 0.5 : (v1 := val1) + 0.5 : (v1 := val2); (8)

In (7), the variable v1 is assigned the value val1; in (8), v1 is assigned either the value val1 or
val2 with equal probability. Part of the expressive power of PRISM comes from the ability
to specify arbitrary probabilities for actions; for example, one could model a bias in Alice’s
choice of polarisation basis, in BB84, with an action such as:

8 See http://go.warwick.ac.uk/nikos/research/publications/index.html .
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[choosebasis ] true → 0.7 : (al basis := �) (9)

+0.3 : (al basis := �);

In this example, Alice is biased towards choosing the rectilinear basis. Knowledge of this
syntax is sufficient for an understanding of the PRISM description of BB84. In what follows,
we will discuss the properties which we have been able to investigate.

As discussed in Section 2, there are two security requirements of interest for BB84:

(i) an enemy’s presence must not go unnoticed; if the legitimate users know that an enemy
is trying to eavesdrop, they can agree to use privacy amplification techniques [20] and/or
temporarily abort the key establishment process.

(ii) any quantity of valid information which the enemy is able to obtain through eavesdrop-
ping must be minimal.

We can use our model of BB84, denoted henceforth by σBB84, to compute the probability

Pr{σBB84 |= Φi} (10)

where Φi is a given PCTL property–formula. Therefore, in order to verify that BB84 satisfies
the security requirements just mentioned, we have to reformulate these requirements in terms
of probability.

Firstly, we should be able to compute exactly what the probability of detecting an enemy
is. In our PRISM model, we can vary n, the number of photons transmitted in a trial of
BB84, and so this probability is a function of n. Let us write the probability of detecting
an enemy as

Pdet(n) = Pr{σBB84 |= Φdet} (11)

In (11), Φdet represents the PCTL formula whose boolean value is true when an enemy
is detected. Before we give the definition of Φdet, we should state the random event E that
occurs when an enemy is detected; this will allow us to write Pdet(n) as a classical probability
Pr(E ).

In BB84, an enemy, Eve, is detected as a result of the disturbance inevitably caused by
some of her measurements. Just as Bob, Eve does not know which polarisation bases were
used to encode the bits in Alice’s original bit string. Eve has to make a random choice of
basis, denoted b′′i , which may or may not match Alice’s original choice, bi. If b′′i = bi, Eve is
guaranteed to measure the i-th photon correctly; otherwise, quantum theory predicts that
her measurement result will only be correct with probability 0.5.

In a so–called intercept–resend attack, Eve receives each photon on the quantum channel,
measures it with her basis b′′i , obtaining bit value d′′i , and then transmits to Bob a new
photon, which represents d′′i in the b′′i basis. If Eve’s basis choice is incorrect, her presence is
bound to be detected. But for detection to occur, Bob must choose the correct basis for his
measurement. Whenever Bob obtains an incorrect bit value despite having used the correct
basis, this is because an enemy has caused a disturbance. Note that we are assuming a
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perfect quantum channel here; an imperfect channel would produce noise, causing additional
disturbances.

Remember that there is always the possibility that Eve’s measurement produces the
correct bit value d′′i = di. This may arise even if her choice of measurement basis b′′i is
incompatible with Alice’s. If Eve’s choice of measurement basis matches that of Alice for
a particular bit, and for this bit Bob also uses the same basis (i.e. if bi = b′′i = b′i), then
Eve’s presence will not be detected from that measurement. In other words, there is clearly
a given probability p with which Eve may obtain the entire key being established by Alice
and Bob; it is necessary to show that p is negligible.

So, to summarise, an enemy’s presence is made manifest as soon as the following event
occurs:

(b′′i 6= bi) ∧ (b′i = bi) for some i 6 n

or equivalently, as soon as:

E ≡ (b′i = bi) ∧ (d′i 6= di) for some i 6 n (12)

Therefore, the probability of detecting an enemy’s presence in BB84 may be written:

Pdet(n) = Pr{E }
= Pr{(b′i = bi) ∧ (d′i 6= di) for some i 6 n}

The corresponding PCTL formula for PRISM is:

Φdet ≡ {true U (b′i = bi) ∧ (d′i 6= di)}
The PRISM model of BB84 uses elaborate variable names, e.g. bob basis instead of b′i, and
alice bit instead of di.

The value of Pdet(n) for 5 6 n 6 30 has been calculated with PRISM, which computes
(11); the result is shown in Figure 1.

0
0.2
0.4
0.6
0.8

1

0 5 10 15 20 25 30

Pdet(n)

n

×××
××××

××××××××
×××××××××××

Fig. 1. The probability that Eve is detected in the BB84 Protocol while performing an inter-
cept–resend attack, as a function of the security parameter n. The crosses indicate data points
produced by PRISM, while the dotted curve is a non–linear least–squares fit to these points.

The first requirement for BB84, namely that it should be possible to detect an enemy’s
presence, clearly is satisfied. As we can see from Figure 1, as the number of photons
transmitted is increased, the probability of detection tends toward 1, i.e. we conclude that
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lim
n→∞

Pdet(n) = 1

We will now consider the second security requirement. Let Ci denote the event in which
Eve measures the i-th photon transmitted correctly. The probability that Eve measures all
photons correctly, and hence is able to obtain the secret key, is the product

Pall =
∏

0<i6n

Pr{Ci} = Pr{C1}Pr{C2} × · · · × Pr{Cn}

We will examine the variation of a quantity proportional to Pall, namely the probability
P>1/2(n) that Eve measures more than half the photons transmitted correctly.

According to the second security requirement for BB84, the amount of valid information
obtained by an enemy must be minimised; we will investigate the variation of the probability

P>1/2(n) = Pr{σBB84 |= Φ>1/2}
as a function of the number of photons transmitted. We expect this quantity to grow smaller
and smaller with n.

The PRISM model of BB84 includes a counter variable, nc, whose value is the number of
times that Eve makes a correct measurement. The formula Φ>1/2 may be written in terms
of this variable:

Φ>1/2 =
{
true U

(
nc >

n

2

)}
Given σBB84 and Φ>1/2, PRISM produces the plot shown in Figure 2; it can be seen from

the figure that P>1/2(n) decays exponentially with n.

0
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P>1/2(n)

n

××××××××××××××××××××××××××

Fig. 2. The probability that Eve, by performing an intercept–resend attack, makes more than n
2

correct measurements in BB84, versus the security parameter n.

Figures 1 and 2 each contain two superimposed plots: the data points marked with
crosses are actual values produced by PRISM, and the dotted curves are nonlinear functions
to which the data points have been fitted. We have used the Levenberg–Marquardt nonlinear
fitting algorithm to compute values c1, c2, c3 and c4 such that:

Pdet(n) ≈ 1− c1 exp[−c2n]

P>1/2(n) ≈ c3 exp[−c4n]

In particular, the values obtained are (to three decimal places): c1 = 1, c2 = 0.134,
c3 = 0.909, and c4 = 0.081. It is evident that, increasing the number of photons transmitted,
or equivalently, the length of the bit sequence generated by Alice, increases BB84’s capability
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to avert an enemy: the probability of detecting the enemy increases exponentially, while the
amount of valid information the enemy has about the key decreases exponentially.

These results are in agreement with Mayers’ claim (see [13]), that “in an information–
theoretic setting, which is our case, a quantity fN such as the amount of Shannon’s infor-
mation available to Eve must decrease exponentially fast as N increases.” Remember, we
have assumed that the number of transmissions, n, is linearly related to N .

Variations in the protocol can be accommodated easily by modifying the PRISM model.
For example, in [1] a bias in Alice’s choice of basis is introduced, and this can be described
by a PRISM action such as (9). This influences the performance of BB84; it alters the
variation of both Pdet(n) and P>1/2(n).

It should be noted that the results presented here are not as general as Mayers’. For
instance, we have assumed that a noiseless channel is being used, and we have only considered
a finite number of cases (namely, where 5 6 n 6 30). Related techniques which are better
suited for a full proof of unconditional security include automated theorem proving [6]; we
will leave this for future work. This technique is not restricted to finite scenarios, and
therefore can provide the generality needed for a more extensive analysis.

5 Conclusions

In this paper we have analysed the security of the BB84 protocol for quantum key distribu-
tion by applying formal verification techniques. In particular, a probabilistic model–checking
tool, PRISM, was used to obtain results which corroborate Mayers’ unconditional security
proof of the protocol. The model checking approach allows us to analyse composite systems,
which include both classical and quantum–mechanical components. We are not only able to
model abstract protocols — as presented here — but concrete implementations as well. We
hope to be able to extend our techniques to accommodate other quantum protocols and also
more powerful models of attacker. This is likely to require going beyond the functionality
provided by the PRISM tool, but we believe that the use of this tool is an important first
step.
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A Basic Concepts of Quantum Information

Here, we briefly describe those aspects of quantum theory relevant to quantum protocols.

A quantum bit or qubit is a physical system which has two basis states, conventionally
written |0〉 and |1〉, corresponding to one-bit classical values. These could be, for example,
spin states of a particle or polarization states of a photon, but we do not consider physical
details. According to quantum theory, a general state of a quantum system is a superposition
or linear combination of basis states. A qubit has state α|0〉 + β|1〉, where α and β are
complex numbers such that |α|2 + |β|2 = 1; states which differ only by a (complex) scalar
factor with modulus 1 are indistinguishable. States can be represented by column vectors:[
α
β

]
= α|0〉 + β|1〉. Formally, a quantum state is a unit vector in a Hilbert space, i.e. a

complex vector space equipped with an inner product satisfying certain axioms. In this
paper we restrict attention to collections of qubits.

The basis {|0〉, |1〉} is known as the standard basis. Other bases are sometimes of interest,
especially the diagonal (or dual, or Hadamard) basis consisting of the vectors

|+〉 =
1√
2
(|0〉+ |1〉) and |−〉 =

1√
2
(|0〉 − |1〉)

Evolution of a closed quantum system can be described by a unitary transformation.
If the state of a qubit is represented by a column vector then a unitary transformation U
can be represented by a complex-valued matrix (uij) such that U−1 = U∗, where U∗ is the
conjugate-transpose of U (i.e. element ij of U∗ is ūji). U acts by matrix multiplication:α′

β′

 =

u00 u01

u10 u11

α
β


A unitary transformation can also be defined by its effect on basis states, which is extended
linearly to the whole space. For example, the Hadamard operator is defined by

|0〉 7→ |+〉 = 1√
2
|0〉+ 1√

2
|1〉 |1〉 7→ |−〉 = 1√

2
|0〉 − 1√

2
|1〉

which corresponds to the matrix H = 1√
2

1 1

1 −1

. The Pauli operators, denoted by σ0, σ1, σ2, σ3,

are defined by

σ0 =

1 0

0 1

 σ1 =

0 1

1 0

 σ2 =

0 −i

i 0

 σ3 =

1 0

0 −1


Measurement plays a key role in quantum physics. If a qubit is in state α|0〉+β|1〉 then

measuring its value gives the result 0 with probability |α|2 (leaving it in state |0〉) and the
result 1 with probability |β|2 (leaving it in state |1〉). For example, if a qubit is in state |+〉
then a measurement (with respect to the standard basis) gives result 0 (and state |0〉) with
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probability 1
2
, and result 1 (and state |1〉) with probability 1

2
. If a qubit is in state |0〉 then

a measurement gives result 0 (and state |0〉) with probability 1.

To go beyond single-qubit systems, we consider tensor products of spaces (in contrast to
the cartesian products used in classical systems). If spaces U and V have bases {ui} and
{vj} then U ⊗ V has basis {ui ⊗ vj}. In particular, a system consisting of n qubits has a
2n-dimensional space whose standard basis is |00 . . . 0〉 . . . |11 . . . 1〉. We can now consider
measurements of single qubits or collective measurements of multiple qubits. For example,
a 2-qubit system has basis |00〉, |01〉, |10〉, |11〉 and a general state is α|00〉+ β|01〉+ γ|10〉+
δ|11〉 with |α|2 + |β|2 + |γ|2 + |δ|2 = 1. Measuring the first qubit gives result 0 with
probability |α|2 + |β|2 (leaving the system in state 1√

|α|2+|β|2
(α|00〉 + β|01〉)) and result 1

with probability |γ|2 + |δ|2 (leaving the system in state 1√
|γ|2+|δ|2

(γ|10〉+δ|11〉)); in each case

we renormalize the state by multiplying by a suitable scalar factor. Measuring both qubits
simultaneously gives result 0 with probability |α|2 (leaving the system in state |00〉), result
1 with probability |β|2 (leaving the system in state |01〉) and so on; the association of basis
states |00〉, |01〉, |10〉, |11〉 with results 0, 1, 2, 3 is just a conventional choice. The power of
quantum computing, in an algorithmic sense, results from calculating with superpositions
of states; all of the states in the superposition are transformed simultaneously (quantum
parallelism) and the effect increases exponentially with the dimension of the state space.
The challenge in quantum algorithm design is to make measurements which enable this
parallelism to be exploited; in general this is very difficult.

The controlled not (CNot) operator on pairs of qubits performs the mapping |00〉 7→ |00〉,
|01〉 7→ |01〉, |10〉 7→ |11〉, |11〉 7→ |10〉, which can be understood as inverting the second
qubit (the target) if and only if the first qubit (the control) is set. The action on general
states is obtained by linearity.

Systems of two or more qubits may be in entangled states, meaning that the states of
the qubits are correlated. For example, consider a measurement of the first qubit of the
state 1√

2
(|00〉 + |11〉). The result is 0 (and the resulting state is |00〉) with probability

1
2
, or 1 (and the resulting state is |11〉) with probability 1

2
. In either case, a subsequent

measurement of the second qubit gives a definite, non–probabilistic result which is identical
to the result of the first measurement. This is true even if the entangled qubits are physically
separated. Entanglement illustrates the key difference between the use of the tensor product
(in quantum systems) and the cartesian product (in classical systems): an entangled state
of two qubits is one which cannot be expressed as a tensor product of single-qubit states.
The Hadamard and CNot operators can be combined to create entangled states: CNot((H⊗
I)|00〉) = 1√

2
(|00〉+ |11〉).
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